

ISO 9001 Registered

Holders / Adapters - Tips - Bar Stock (RWMA alloys) Forgings & Castings, Fixtures - Accessories

"TAKE A TIP FROM WORCO"

Worton Manufacturing Company Limited is a leader in the manufacture of resistance welding electrodes.

We market a complete line of tips, holders and accessories.


Since 1963 Worton has developed its expertise as a manufacturer servicing the welding markets.

"Worco" brand welding products are all manufactured at this location to exact specifications and are subjected to strict quality control through our ISO 9002 Quality System. You will not find a better welding product than "Worco".

The latest in precision equipment allows us to process all metals with particular expertise in copper, brass, aluminum and stainless steel.

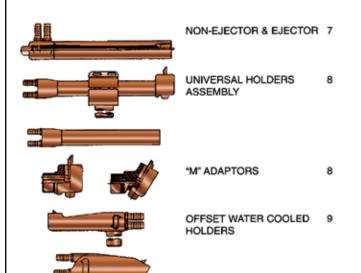
We solicit custom work on our CNC lathes and machining centres as part of our service. Our technical experts take a personal interest in solving your welding and custom machining problems.

Put our experience to work for you today. You'll quickly see how our products, people, technology and service have made Worton Manufacturing Co. Ltd. one of the resistance welding industries leading manufacturers.

INDEX

INTRODUCTION

WELDING ELECTRODE ALLOYS & THEIR APPLICATIONS 2 RECOMMENDED ELECTRODE MATERIALS FOR SPOT WELDING SIMILAR AND DISSIMILAR METALS 3 APPLICATION DATA SHEET - LOW CARBON STEEL 4 APPLICATION DATA SHEET - STAINLESS STEEL 5 RWMA STANDARD TAPERS 6


HOLDERS

SLIMLINE OFFSET HOLDERS 10 HEAVY DUTY DUAL HOLDER ASSEMBLY 12 WATER COOLEDTEE HOLDER 12 **DUAL ELECTRODE HOLDER** 12 ILLUSTRATED HOLDER APPLICATIONS 13

ELECTRODES

WELDING WHEELS 14 STUD & NUT WELDING ELECTRODES 22 to 24 HEX ADAPTORS - STRAIGHTTHREAD 32 WORCO REFRACTORY METALS 33 REFRACTORY METAL FACED ELECTRODES 33 **HEXAGONTHREADED CAPS** 34 **BAR STOCK SIZES & WEIGHTS** 35 LAMINATED SHUNTS 36 JUMPER CABLES 37

ELECTRODE HOLDERS

MULTISPOT HOLDERS FOR AIR OR HYDRAULIC PISTONS

FEMALE CAPS AND SHANKS

MALE CAPS & SHANKS 15 STRAIGHT ELECTRODES DOME & POINTED NOSE 16 FLAT & OFFSET NOSE 17 TRUNCATED, RADIUS BENT ELECTRODES SINGLE BEND 18 RADIUS BEND 19 DOUBLE BEND 20

BACK-UP ELECTRODES

SWIVEL HEAD 22

SQUARE & 25 RECTANGULAR HEAD

IRREGULAR ELECTRODES

26, 27, 28, 29, 30, 31

"M" ELECTRODE ADAPTERS

33

38

ACCESSORIES

CAP ELECTRODE 38 EXTRACTOR

14

REAMERS, HOSE CONNECTORS AND HOSE CLAMPS

DRESSERS

HAND ELECTRODE 38

WELDING ELECTRODE ALLOYS AND THEIR APPLICATIONS

GROUP A - COPPER BASE ALLOYS

CLASS 1 - Copper zirconium alloy that is superior to pure copper because of its higher annealing temperature, 350°C (662°F), while still maintaining comparable electrical and thermal conductivity. It is recommended for spot welding aluminum and magnesium alloys, coated material (terne plate, tin plate, galvanized iron, cadmium plate), brass and bronze.

CLASS 2 - A chromium copper alloy most generally used for spot welding electrodes. This material is a precipitation hardened material having a high annealing temperature, 500°C (932°F). It is recommended for welding clean, low alloy steels, stainless steel, low conductivity brasses, and nickel alloys.

CLASS 3 - A beryllium m-copper alloy possessing a combination of toughness, hardness and high resistance to annealing, 550°C (1022°F). It is recommended for welding stainless steel, monel metal and special welding components requiring high strength, wear resistance and good conductivity. Also available in Beryllium free (alloy 18000).

GROUP B - COPPERTUNGSTEN ALLOYS, TUNGSTEN and MOLYBDENUM

Generally this group of materials is recommended for electrode facings and welding dies. The hardness of these materials is unaffected by welding temperature; this quality gives them definite advantages where adequate cooling cannot be maintained.

CLASS 11 - A tungsten copper alloy recommended as facings and inserts for flash and butt welding dies and general purpose projection welding electrodes. It is recommended for high melting steels such as stainless steel.

CLASS 13 - Pure Tungsten

This material does not alloy readily with non-ferrous metals and therefore is used in welding copper and brass. It is also used for electro-brazing electrodes. This material is not readily machinable.

CLASS 14 - Pure Molybdenum

This material is used for electro-brazing and welding nonferrous metals as is class 13.

It is not as hard as tungsten, however it is readily machinable which may be advantageous.

CLASS 20 - Dispersion strengthened copper (Glidcop)

This material has very high resistance to annealing (1000°C). Most commonly available in male /female caps yielding a long life premium cap.

PROPERTIES OF TYPICAL RWMA WELDING METALS

ALL	LOY	PRINCIPAL ELEMENTS	RWMA GROUP	HARDNESS ROCKWELL	ELECTRICAL CONDUCTIVITY % I.A.C.S.	ULTIMATE STRENGTH P.S.I.	ELONGATION % IN 2"	ANNEA!	ING TEMP
CLASS 1	WROUGHT	COPPER, ZIRCONIUM	Α	708	92	65000	18	350	662
CLASS 2	CAST	COPPER, CHROMIUM	А	70B 80B	80 80	53000 72000	17 18	500 500	932 932
CLASS 3	CAST WROUGHT	COPPER, BERYLLIUM COBALT	A	90B 90B	52 52	100000 110000	12 14	550 550	1022 1022
CLASS 11	SINTERED	COPPER, TUNGSTEN	В	98B	46	90000	-	-	-
CLASS 13	CAST	TUNGSTEN	В	70A	32	100000	-	-	-
CLASS 14	CAST	MOLYBDENUM	В	90B	31	110000	-	-	-
CLASS 20	WROUGHT	COPPER, ALUMINIUM OXIDE	С	75B	85	54000	25	1000	1832

Recommended Electrode Materials for Resistance Welding SIMILAR and DISSIMILAR Metals, Using **Conventional Methods**

	Tungst Molyb demu		tag- islum	Zii	nc	Michel Alloys	Nic	chet	Tin		Leed	Sta In S	in- ISS bei	Chron Plata	SEC.	ad- um late	Galvan Izad Iro Zn.Pizi	To P	r ne late	Tie Pla		Scaly Steel	١	C, R Steel	Pho pho Bron	Silico Brons	m i	Michel Silver	Cupro Nichel	Brass Yellow	Brass Red	Copper	Alu- minum Alloys	Alu- minum
Aluminum	\prod	1	1 2 8	1	٥.	E #	E	11	E L	9 !	1	H	3.4		E	340	D 1		1 240	٥		\mp		34	0 -		4	+	H	D II	E V	H V	C 1	C
Aluminum Alloys Durolumin	H	C	+-	D =	ė	E H	1	3	E	1 E	_	H	9		_	9	D 1	-	1 249	D I	4	\mp	E	-	0 =	1 0 1	1	F		D 11	E V	E V	D 1	
Copper-Pure	H 1	I H	_	± >	_	E II	E V	-	H V	1	-	H V	8	H II	-	e	H I	H V	•	H	4	+	H	-	0 7	_	6 V) II	D H	D II	E II	K V		
Brass—Red 5:25% Zinc	\vdash	۲		H	_	D II V ⁶	٥		H V	1	\pm	H	<u>a</u>	H II	H	0	H I	H		H	1	÷	H	_	DI	_	1	-	D II	D 11	E H	-		
Brass-Yellow 25-40% Zinc	H	E	-		356	D 11	D ₽		D IV	4	Ŧ	H	40	H (I	E	Ф	E 1	E	-	E	1	\pm	Ē		C I	C	1 0	_	C II	C III				
Cupro-Nickel	H	0	÷		_	C 11	C H	-	D II ⁶	1	_	E	0	E 11	E 11	0	E I	E		E 11	_+	н 'eg	E II	3	C 1	C	1	_	B 1					
Nickel-Silver		D	-		_	C II	C II	_	D E	1	-	ŧ	9	E H	E	•	E I	E 11		E	_	H 6	E II	_	C I	C		1 1		-				
Silicon Bronze		Δ=	+	D		C II	D	-	D I	1	-	E	9	E 11	E	9	E 1	E	@	E 11		н (д П	0	_	C 1	1 B 1	_							
Phosphor Bronze Grades A, C, & D		E	-	E II	\rightarrow	D III	DH	-	E 1	_	-	E II	_	E H	E II	0	E 1	E	0	E	I	11 7	D		C		_							
C. R. Steel H. R. Steel—Clean	11 3	İ			_	D III	D	-	H G	_	1 46,	B	ъ	B 11	C	п	C I	8	•	п	7	E di	ш	1		_								
Scaly H. R. Steel		3	L	Н		\pm		Н	\pm	\pm	\pm	р Р		o T	ď	-	D 00	0	9	D Teg	۱,	E (8	4											
Tin Plate	1 9	Ŀ	٥,	п	٠,) II	1	•	_	4, 1	1	C		C	ı	•	C 1	1	٥,	D	<u> </u>													
	E .	Ī	٠,	1	33	D	<u>Б</u>		E	3 ₀ [٠,	C I	11	1	1		C	-	6					L	EG	END					D 14	ELD	ABIL	ITV
Galvanized Iron Zinc-Plate	1 9	ď	L	ī	4	D 00	D II		E !	30 1	4	1		C	1		с 60	4			4	λ. Ε	Blo	ck	In	terp	ret	atio	on			- Exce	llent	
Cadmium Plate	E 11	Ī	-	D	45	D 3	ı		E	١, أ	3.5	c I		_ 	1	ŀ					١		Wel abil	_			etro gain				6	- Goo	d	
	D II	İ		Н	╛	D II II ^B	п	H	1	H 11	134	н		8 II II ⁹	}						Ì			ctrod			pec		1		H	- Very		
Security States	D 11	İ	L	Н	_	D II	е	_	1	1	\pm	÷e									L		^	pins	_	infe	ormo	otion	J					
Leed		Ť	-	-	ঘ	H 	1	٠.	H	şĪ.	1.															D	SI	PEC	LAI	INFO)RM	ΔΤΙΩ	N	
Tin		Ī	56	_	•	H II 1 ³ 5 ₈	⊡	\Box	D I								NIUN								2.	Good v	veld	stren	ngth. under	special			-	
Nickel	D II	Τ	L	Н		C H II ²	B	_						11	CH	ROM	ALIUM LUUM	CO	PPE	RC	LA	SS 2			3. 4.	1	old s tuai			et occ			'is ob	
Nickel Alloys Monel-Nichrome (High Res.)	C 1 8	T		Н		8 III It ²									TU	NGS	R TU	CL	ASS	5 13			1		6.	Keep (work,	elec	trode	s clea	ust be in to p	event	sticking	y to the	•
Zinc	\pm	ī	٠,	0 1													de m									welding	۵.			mends imize d				
Magnesium Alloys	+	-	1 8											`			ond o				-116				9.	tion.	mo	y dia	evlou	in othe				
	D II	-																																

WELDABILITY INTERPRETATION

It should be understood that any metal, similar or dissimilar, may be joined by resistance welding methods and a strength of band obtained which may be satisfactory for the purpose intended.

The weldability as expressed in this chart applies only with the use of conven-al spot welding methods and is intended to serve as a guide.

Many metal combinations which are expressed as having a "poor weldability" in the chart may be joined by using a special set-up or procedure.

For example, pure copper is expressed as being "improctical to weld" in the chart but it may be joined by such expedients as the insertion of a third metal (as silver solder) between the sheets or plating another metal (nickel, tin) on the surfaces or by welding underwater, etc.

The weldability of any two materials as expressed in this chart was derived after a careful study and survey of the many factors which influence the welding or resultant weld of the metals.

- Technical research and laboratory tests.
 Field tests and production.
 Thermal and electrical conductivity.
 Metallurgical properties, melting and boiling points.
 Nature of resultant weld or alloy.
 Weld strength.
 Relative accuracy in control of welding conditions necessary.

As a basis for comparison cold folled (mild) steel has been chosen and its weld-ability designated as "excellent".

APPLICATION DATA SHEET

Spot Welding Data

Optimum Conditions Schedules For Spot Welding Low Carbon Steel — SAE 1010

	Electro	de Diam	eters and Shape*			Ι				Diameter of Fused Zone	Minimum Weld Spacing	Minimum Contacting
1	Flat Face	·	Radius Face	l		ı	1			(Approx.)	Spacing	Overlap
Thick- ness of Thinnest	***************************************					Weld Time (Cycles) (60	Hold	Welding	Weld Shear Strength (For Steels Having Ultimate Tensile Strength of 90,000			
Outside 'Piece (Inches)	Maximum d (Inches)	Min. (Inches		Recommended Minimum Standard Electrode Size	Weld Force (Lbs.)		Time (Cycles) Min.	Current (Amps.) (Approx.)	psi and below) Minimum Strength (Lbs/Weld)	Dw (Inches)	S (Inches)	L (Inches)
0.010	0.125	1/2	2	4RW 1MT	160		5	4,000	130	0.113	1/4	3/e
0.021	0.187	1/2	2	4RW 1MT	244	6	8	6,500	300	0.139	3/8	7/16
0.031	0.187	1/2	2	4RW 1MT	326		10	8,000	530	0.161	1/2	7/14
0.040	0.250 0.250	5/s 5/s	3 3	5RW 2MT 5RW 2MT	412 554		12 16	8,800 9,600	812 1,195	0.181 0.210	3/4 7/8	1/2 9/16
0.062	0.250	5/e	3	5RW 2MT	670	18	20	10,600	1,717	0.231	1	5/e
0.078	0.312	5/a	3	5RW 2MT	903	25	30	11,800	2,365	0.268	11/8	11/16
0.094	0.312	5/a	4	7RW 3MT	1,160	34	35	13,000	3,054	0.304	11/4	3/4
0.109	0.375	7/8	4	7RW 3MT	1,440	45	40	14,200	3,672	0.338	15/16	13/16
0.125	0.375	7/8	4	7RW 3MT	1,760	60	45	15,600	4,300	0.375	11/2	² /e
0.156	0.500	7/8	6	Male or Female Threaded	2,500	93	50	18,000	6,500	0.446	13/4	,
0.187	0.625	1	6	Male or Female								l ' I
0.250	0.750	11/4	6	Threaded Male or Female	3,340	130	55	20,500	9,000	0.516	2	11/2
				Threaded	5,560	230	60	26,000	18,000	0.660	4	11/2

PERMISSIBLE SCHEDULE VARIATIONS FOR SPOT WELDING LOW CARBON STEEL

Low Carbon Steel Spot Welding Data Chart-Single Impulse Welding

DA			O ALL CL WELDS	ASSES				-UP FOR BES					P FOR MEDIU					P FOR GOOD	
Thick- ness of Each of the Two Work Pieces Inches		Max. d	Min. Weld Spacing (Note 4) Inches	Min. Con- tacting Overlap (Note 6) Inches	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Cur- rent Amps.	Dem. of Fused Zone	Average Tensile Shear Strength ±14% Pounds	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Welding Cur- rent Amps.	Diam. of Fused Zone	Average Tensile Shear Strength ±17% Pounds	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Welding Current Amps.	Dem. of Fused Zone	Average Tensile Shear Strength ±20% Pounds
.010 .021 .031 .040 .050	1/2 1/2 1/2 5/a 5/a	1/6 3/16 3/16 1/4 1/4	14 3/6 1/2 3/4 7/8	3/8 7/16 7/16 5/2 9/16	4 6 8 10 12	200 300 400 500 650	4000 6100 8000 9200 10300	.13 .17 .21 .23 .25	235 530 980 1305 1820	5 10 15 21 24	130 200 275 360 410	3700 5100 6300 7500 8000	.12 .16 .20 .22 .23	200 460 850 1230 1700	15 22 29 38 42	65 100 135 180 205	3000 3800 4700 5600 6100	.11 .14 .18 .21	160 390 790 1180 1600
.062 .078 .094 .109 .125	5/6 5/6 5/6 7/6 7/6	1/4 6/16 6/16 3/8 3/8	1 11/0 11/4 15/16 11/2	5/6 11/16 3/4 13/16 7/6	14 21 25 29 30	1600	11600 13300 14700 16100 17500	.27 .31 .34 .37	2350 3225 4100 5300 6900	29 36 44 50 60	500 650 790 960 1140	9000 10400 11400 12200 12900	.26 .30 .33 .36 .39	2150 3025 3900 5050 6500	48 58 66 72 78	250 325 390 480 570	6800 7900 8800 9500 10000	.25 .28 .31 .35	2050 2900 3750 4850 6150

NOTES:

- Low Carbon Steel as hot rolled, pickled, and slightly oiled with an ultimate strength of 42,000 to 45,000 PSI Similar to SAE 1005—SAE 1010.
- Electrode Material is CLASS 2.
 Surface of steel is lightly oiled but free from
- grease, scale or dirt.

 4. Minimum weld spacing is that distance for which no increase in welding current is necessary to compensate for the shunted current
- effect in adjacent welds.

 5. Radius Face electrodes may be used:

0.010 to 0.031 — 2" Radius 0.031 to 0.078 — 3" Radius 0.078 to 0.125 — 4" Radius

8. Tensile shear strength values are based on

recommended test sample sizes: Direction of Force Thickness W Width

.000° to .029° .030° to .058° .059° to .115° .116° to .190° % 1 1½ 2

- 9. Tolerance for machining of electrode diameter "d" is ±.015" of specified dimension.

 10. Electrode force does not provide for force to
- press ill-fitting parts together.

APPLICATION DATA SHEET

Schedule for Spot Welding Stainless Steel

THICKNESS "T" of THINNEST OUTSIDE PIECE (See Notes 1, 2, 3 and 4	AND:	ODE DIAMETER SHAPE Note 5)	ELECTRODE FORCE	WELD TIME CYCLES	CURI (App AM Tensile	DING RENT Prox.)	MINIMUM CONTACTING OVERLAP	MINIMUM WELD SPACING (See Note 6 Below)	DIAMETER OF FUSED ZONE	Ultimate Te	LB.	
Below) INCHES	D, IN., Min.	d, IN., Max.	LB.	(60 Per Sec.)	Strength Below 150000 Psi	Strength 150000 Psi and Higher		IN.	IN. Approx.	Up to 90000 Psi	150000 Psi	and Higher
0.006 0.008 0.012 0.014	3/16 3/16 1/4 1/4	*/32 */32 */8 *8	180 200 260 300	2334	2000 2000 2100 2500	2000 2000 2000 2200	3/16 3/16 1/4 1/4	3/16 3/16 1/4 1/4	0.045 0.065 0.076 0.082	60 150 185 240	70 170 210 250	85 210 250 320
0.016 0.018 0.021 0.025 0.031	1/4 1/4 1/4 2/8 3/8	1/8 1/8 1/32 5/32 3/16	330 380 400 520 650	4 4 5 5	3000 3500 4000 5000 6000	2500 2800 3200 4100 4800	1/4 1/4 6/16 3/8 3/8	5/16 6/18 5/16 7/16 1/2	0.088 0.093 0.100 0.120 0.130	280 320 370 500 680	300 360 470 600 800	380 470 500 680 930
0.034 0.040 0.044 0.050 0.056	?/e ?/s ?/e !/2 !/2	7/16 7/16 7/16 1/4 1/4	750 900 1000 1200 1350	6 6 8 8	7000 7800 8700 9500 10300	5500 6300 7000 7500 8300	7/16 7/16 7/16 1/2 9/16	9/16 9/8 11/16 3/4 7/8	0.150 0.160 0.180 0.190 0.210	800 1000 1200 1450 1700	920 1270 1450 1700 2000	1100 1400 1700 2000 2450
0.062 0.070 0.078 0.094 0.109 0.125	*/2 */8 */8 */8 */4 */4	1/4 1/4 5/45 5/46 3/8 3/8	1500 1700 1900 2400 2800 3300	10 12 14 16 18 20	11000 12300 14000 15700 17700 18000	9000 10000 11000 12700 14000 15500	5/8 5/8 11/96 3/4 13/98	1 1º/a 1º/4 1º/2 1º/2 2	0.220 0.250 0.275 0.290 0.290 0.300	1950 2400 2700 3550 4200 5000	22400 2800 3400 4200 5000 6000	2900 3550 4000 5300 6400 7600

NOTES:

- 1. Types of Steel—301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 and 349 $\,$
- Material should be free from scale, oxides, paint, grease and oil.
 Welding conditions determined by thickness of thinnest outside piece "T."
- 4. Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.
- 5. Electrode Material, CL2, CL3, OR CL11.
- Minimum weld spacing is that spacing for two pieces for which no special
 precautions need be taken to compensate for shunted current effect of
 adjacent welds. For three pieces increase spacing 30 per cent.

Design And Welding Data For Projection Welding Low Carbon Steels

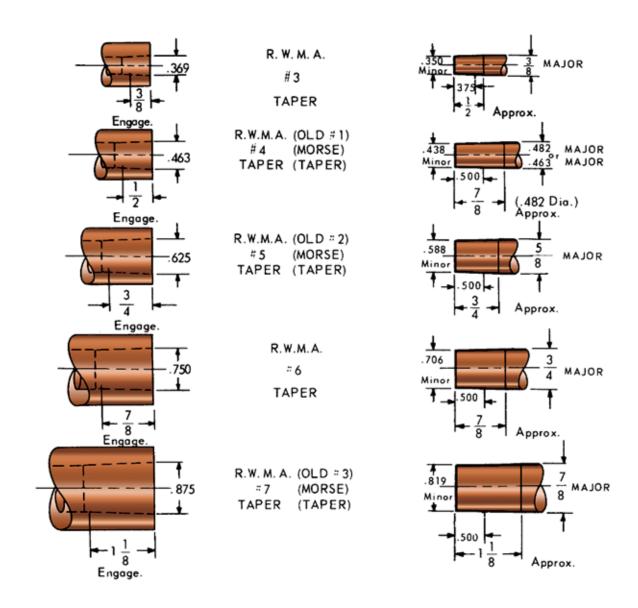
	PROJECT	ON DESIGN	ELECTRODE	DIAMETERS						T	1
Thickness	th h	DP-	***	d I					Diameter of Fused Zone	Minimum Shear Strength (Single Projection Only)	Minimum Contacting Overlap
of Thinnest Outside Piece Inches	Base Diameter of Projection Dp Inches	Heightol Projection H Inches	Minimumd Inches	Minimum D Inches	Electrode Force Pounds	WeldTime (Cycles) 60 Cycles per Sec.	HoldTime (Cycles) Minimum	Welding Current Amperes (Approx.)	Dw Inches	(For Sieels Having Strength of 100,000 pei and below) Pounds	18F = 2 DP MIN. -L-9-
0.010 0.012 0.014 0.016 0.021	0.055 0.055 0.055 0.067 0.067	0.015 0.015 0.015 0.017 0.017	0.125 0.125 0.125 0.187 0.187	1/2 1/2 1/2 1/2 1/2	50 80 100 115 150	3 3 4 6	3 3 4 6	2,800 3,100 3,400 3,600 4,000	0.112 0.112 0.112 0.112 0.112 0.140	150 200 250 285 380	1/e 1/e 1/e 5/ ₃₂ 5/ ₃₂
0.025 0.031 0.034 0.044 0.050	0.081 0.094 0.094 0.119 0.119	0.020 0.022 0.022 0.028 0.028	0.187 0.187 0.187 0.250 0.250	1/2 1/2 1/2 5/6 5/6	200 300 350 480 580	6 8 10 13 16	8 10 14 16	4,500 5,100 5,400 6,500 7,100	0.140 0.169 0.169 0.169 0.225	525 740 900 1,080 1,500	3/18 7/32 7/32 9/32 9/32
0.062 0.070 0.078 0.094 0.109	0.156 0.156 0.187 0.218 0.250	0.035 0.035 0.041 0.048 0.054	0.312 0.312 0.375 0.500 0.500	7/6 7/6 7/8 7/8 7/8	750 900 1,050 1,300 1,650	21 24 26 32 38	20 24 30 30 36	8,400 9,200 10,500 11,800 13,300	0.225 0.281 0.281 0.281 0.338	2,100 2,550 2,950 3,700 4,500	3/6 3/2 7/16 1/2 5/6
0.125 0.140 0.156 0.171 0.187	0.281 0.312 0.343 0.375 0.406	0.060 0.066 0.072 0.078 0.085	0.500 0.625 0.625 0.750 0.750	7/e 1 1 1	1,800 2,300 2,800 3,300 3,800	45 60 80 105 125	40 45 50 50 50	15,000 15,700 17,250 18,600 20,000	0.338 0.437 0.500 0.562 0.562	5,200 6,000 7,500 8,500 10,000	11/16 3/4 13/16 7/6 15/16
0.203 0.250	0.437 0.531	0.091 0.110	0.875 1.000	11/4 11/4	4,500 6,600	145 230	55 60	21,500 26,000	0.625 0.687	12,000 15,000	1 11/4

NOTES:

- 1. Type of Steel-Low Carbon SAE 1010-0.15% Carbon Maximum.
- Material free of scale, oxide, paint, dirt, etc.
 Size of projection determined by thickness of thinnest piece and projection
- should be on thickest piece.

 4. Data is based on thickness of thinnest sheet for two thicknesses only.

 Maximum ratio between two thicknesses = 3 to 1.
- 5. See TABLE BELOW for design of punch and die for making projections.
- Contacting overlap does not include any radii from forming.
 Projection should be located in center of overlap.


8. Tolerance for Projection Dimensions:

residuate for i rejection dimensions.	Thickness	Thickness
Dimension	Up to 0.060*	Over 0.050*
Diameter *D*	±0.003*	±0.007*
Height "H"	±0.002*	±0.005*

±0.005*

R.W.M.A. STANDARD TAPERS

The above new R.W.M.A. tapers cover a broader range than the old Morse tapers. These new tapers are .600" taper per foot and replace the Morse tapers which vary from .5986 on the #1 M.T. to .6024 on the #3 M.T. The new R.W.M.A. #4, #5, and #7 tapers are inter-changeable with the old #1, #2, and #3 Morse tapers. You will note there are 2 new sizes, the #3 and #6 R.W.M.A. Tapers.

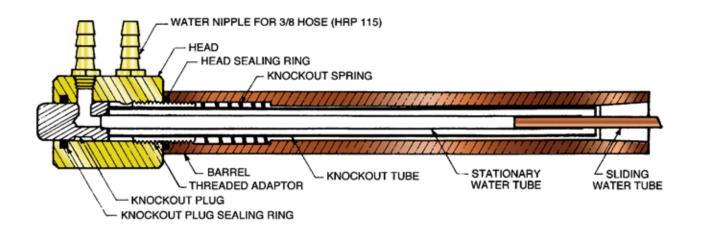
STANDARD ELECTRODE HOLDERS

STANDARD ELECTRODE HOLDERS

STRAIGHT STYLE, EJECTOR AND NON-EJECTOR TYPES

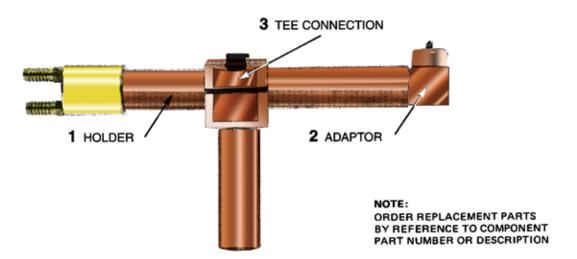
Non-Enjector Holder No.	Barrel Dia. (Inches)	Barrel Length (Inches)	RWMA Taper Size	Ejector Holder No.
N-06034 N-07034 N-08034 N-10034 N-12034	3/4 7/8 1 1-1/4 1-1/2	3 3 3 3 3	4 4 4 4	E-06034 E-07034 E-08034 E-10034 E-12034
N-06084 N-07084 N-08084 N-10084 N-12084	3/4 7/8 1 1-1/4 1-1/2	8 8 8 8	4 4 4 4	E-06084 E-07084 E-08084 E-10084 E-12084
N-06124 N-07124 N-08124 N-10124 N-12124	3/4 7/8 1 1-1/4 1-1/2	12 12 12 12 12	4 4 4 4	E-06124 E-07124 E-08124 E-10124 E-12124
N-07035 N-08035 N-10035 N-12035	7/8 1 1-1/4 1-1/2	3 3 3	5 5 5 5	E-08035 E-10035 E-12035
N-07085 N-08085 N-10085 N-12085	7/8 1 1-1/4 1-1/2	8 8 8	5 5 5	E-07085 E-08085 E-10085 E-12085
N-07125 N-08125 N-10125 N-12125	7/8 1 1-1/4 1-1/2	12 12 12 12	5 5 5	E-08125 E-10125 E-12125
N-10086 N-12086 N-10126 N-12126	1-1/4 1-1/2 1-1/4 1-1/2	8 8 12 12	6 6 6	E-10086 E-12086 E-10126 E-12126
N-10087 N-12087 N-10127 N-12127	1-1/4 1-1/2 1-1/4 1-1/2	8 8 12 12	7 7 7 7	E-10087 E-12087 E-10127 E-12127

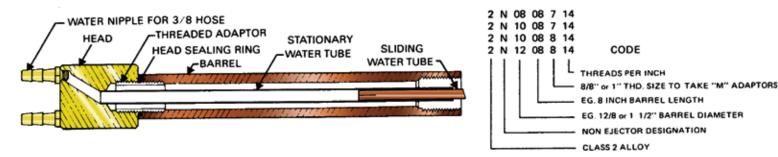
CLOSE-COUPLED STRAIGHT HOLDERS


Barrel Dia. (Inches)	RWMA Taper Size	Barrel Length (inches)	Non-Ejector Holder No.
3/4	4	3	N-06034
7/8	1 4	3	N-07034
1	1 4 1	3	N-08034
1-1/4	1 4 1	3	N-10034
1-1/2	4	3	N-12034
7/8	5	3	N-07035
1	5	3	N-08035
1-1/4	5	3	N-10035
1-1/2	5	3	N-12035

NOTE:

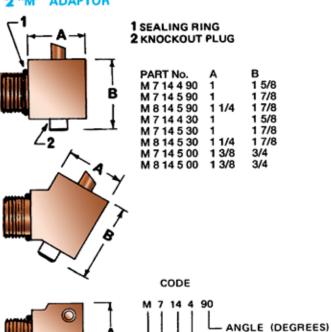
HEAVY DUTY HOLDERS ARE DESIGNATED BY PREFIX "2" EG. 2 E-08-08-5 PREFIX "2" DESIGNATES RWMA CLASS 2 MATERIAL


Explanation of holder code number:

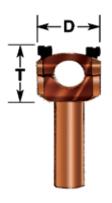


UNIVERSAL WATER COOLED HOLDERS GENERAL ASSEMBLY

1 "2N" HEAVY-DUTY HOLDER (CLASS 2 ALLOY)



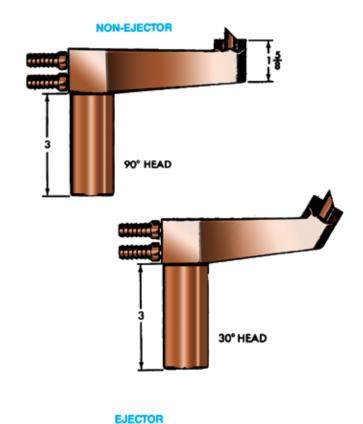
- RWMA TAPER - THREADS PER IN - 7/8" THREAD


- ADAPTOR DESIGNATION

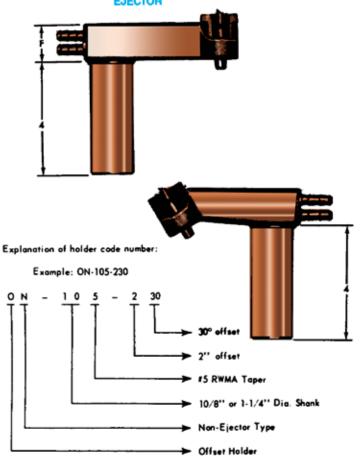
-B-⊷

3 "H" TEE CONNECTION

	т	D
H 08 08 3	2 1/8	2 1/2
H 10 10 3 1/2	2 1/2	3
H 12 10 4	2 3/4	3
H 12 12 4	2 3/4	3
H 10 12 4	2 1/2	3
	SHANK LE	NGTH IN.
	EG. 12/8 or	1 1/2" SHANK DIA.
	10/8 or 1 1	/4" HOLDER DIA.
	TEE DESIG	NATION

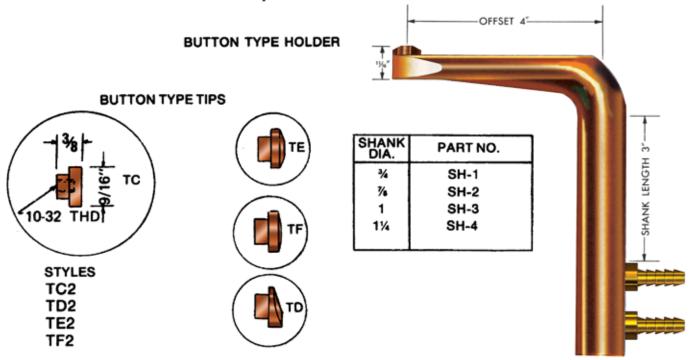


OFFSET WATER COOLED HOLDERS

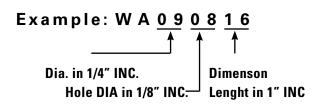

STANDARD ELECTRODE HOLDERS

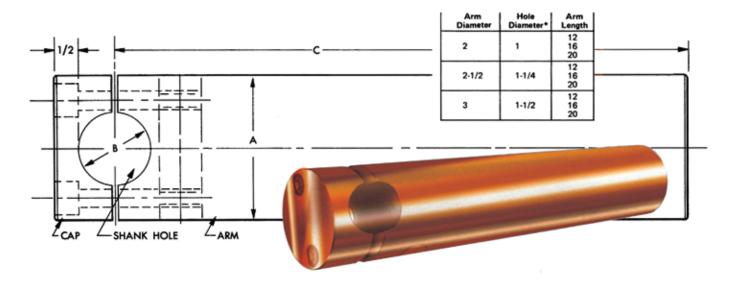
OFFSET STYLE, EJECTOR AND NON-EJECTOR TYPES

Non-Ejector Holder No.	Shank Dia. Inches	RWMA Taper Size	Offset Inches	Taper Socket Angle (Degree)	Ejector Holder No.
ON-064-230	3/4	4	2	30	
ON-074-230	7/8	4		30	
ON-084-230	1	4	2	30	
ON-104-230	1-1/4	4	2 2 2 4	30	
ON-064-430	3/4	4		30	
ON-074-430	7/8	4	4	30	
ON-084-430	1	4	4	30	
ON-104-430	1-1/4	4	4	30	
ON-075-230	7/8	5	2	30	
ON-085-230	1	5	2 2	30	
ON-105-230	1-1/4	5	2	30	
QN-125-230	1-1/2	5	2	30	
ON-075-430	7/8	5	4	30	QE-075-430
ON-085-430	1	6	4	30	OE-085-430
ON-105-430	1-1/4	5	4	30	OE-105-430
ON-125-430	1-1/2	5	4	30	QE-125-430
ON-106-230	1-1/4	6	2	30	
ON-126-230	1-1/2	6	2 2	30	
ON-106-430	1-1/4	6	4	30	OE-106-430
ON-126-430	1-1/2	6	4	30	OE-126-430
ON-107-230	1-1/4	7	2	30	
ON-127-230	1-1/2	7	2	30	
ON-107-430	1-1/4	7	4	30	OE-107-430
ON-127-430	1-1/2	7	4	30	OE-127-430


Non-Ejector Holder No.	Shank Dia. Inches	RWMA Taper Size	Offset 	Taper Socket Angle (Degree)	Ejector Holder No.
ON-064-290	3/4	4	2	90	
ON-074-290	7/8	4	l 2	90	
ON-084-290	1	4	2 2	90	
ON-104-290	1-1/4	4	l 2	90	
ON-064-490	3/4		2 4	90	
ON-074-490	7/8	4	4	90	
ON-084-490	1	4	4	90	
ON-104-490	1-1/4	4	4	90	
ON-075-290	7/8	5	2	90	OE-075-290
ON-085-290	1	5	2	90	OE-085-290
ON-105-290	1-1/4	5	2 2 2	90	OE-105-290
ON-125-290	1-1/2	5	2	90	OE-125-290
ON-075-490	7/8	5	4	90	OE-075-490
ON-085-490	1	5	4	90	OE-085-490
ON-105-490	1-1/4	5	4	90	OE-105-490
ON-125-490	1-1/2	5	4	90	OE-125-490
ON-106-290	1-1/4	6	2	90	OE-106-290
ON-126-290	1-1/2	6	2	90	OE-126-290
ON-106-490	1-1/4	6	4	90	OE-106-490
ON-126-490	1-1/2	6	4	90	OE-126-490
ON-107-290	1-1/4	7	2	90	OE-107-290
ON-127-290	1-1/2	7 7	2	90	OE-127-290
ON-107-490	1-1/4	7	4	90	OE-107-490
ON-127-490	1-1/2	1 7	4	90	OE-127-490

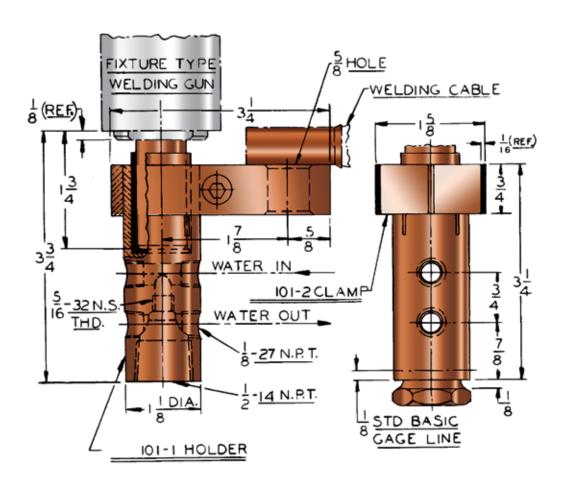
SLIMLINE OFFSET HOLDERS


Worco's "Slimline" Holders are manufactured from durable class 2 alloy for long trouble free life. It requires no "Tee" connection and is therefore more economical than many other set-ups. The shank is available in various sizes as indicated below. Worco "Button type" Tips are available in class 1 or class 2 alloy for use with the "Slimline" Holder. The four styles available are illustrated below.



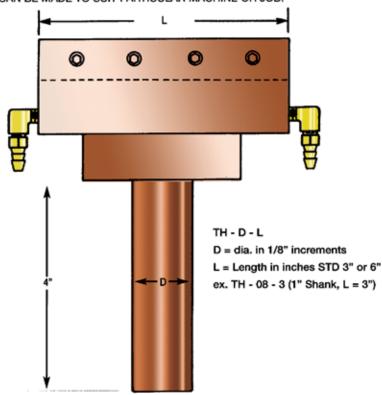
WORTON WELDER ARMS

Spot welding machine arms made by Worton reduce set up time and give longer life.


Electrode holder shanks can be attached to these arms from the front, by bolting the cap over them. This means no extra clearance is required between the arms to allow running a shank up (or down) into a hole in the arm.

ELECTRODE HOLDERS FOR SERIES A PISTON ROD ENDS

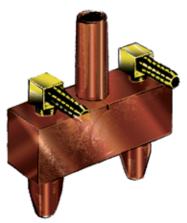
Stationary Water Tube = WTA 101-L. [L = length in 1/8" increments]


Sliding Water Tube = HRP 110-L [L = length in inches] Note: HRP 110 is 4.5" long.

THE 101A HOLDER ASSEMBLY IS ILLUSTRATED, HOWEVER OTHER VARIATIONS ON THIS STYLE ARE AVAILABLE WHICH INCLUDE LONGER BARREL, LARGER BARREL, LARGER CLAMP AND LARGER PIPE THREAD SIZE.

WATER COOLED TEE HOLDER

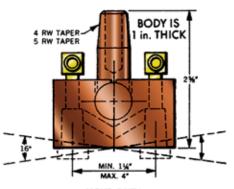
HOLDS BAR FOR CROSS-WIRE OR PROJECTION WELDING CAN BE MADE TO SUIT PARTICULAR MACHINE OR JOB.



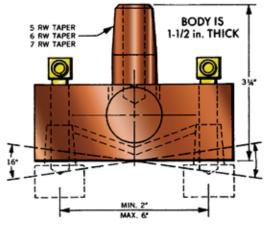
DA 300 COMPACT DUAL ADAPTER

- · WATER COOLED WITH NO HOSE CONNECTIONS
- FITS A STANDARD WATER COOLED ELECTRODE HOLDER WITH #5 RWMA TAPER
- 1" TIP SPACING
- EQUILIZED TIP PRESSURE

DUAL ELECTRODE HOLDER



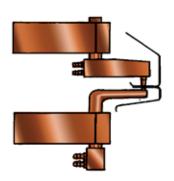
THIS EQUAL PRESSURE ADAPTOR PIVOTS TO BALANCE LOAD ON TWO ELECTRODES. IT PROVIDES UNIFORM WELD NUGGETS WHEN WELDING TWO SPOTS WITH ONE HOLDER. THE UNIT IS WATER COOLED AND CAN BE MADE TO TAKE STANDARD CAPS OR RWMA ELECTRODES.


SPACING BETWEEN ELECTRODES IS MADE TO ORDER WITHIN LIMITS ILLUSTRATED.

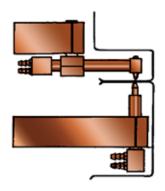
Style	Shank Taper	Descrip- tion*	Tip Spacing Range Inches		Socket Taper	
LIGHT Duty	4RW 4RW	DA-1408 DA-1416	1-1/4 to 2 2 to 4	4RW 4RW	4CT 4CT	5CT 5CT
	5RW 5RW	DA-1508 DA-1516	1-1/2 to 2 2 to 4	4RW 4RW	4CT 4CT	5CT 5CT
HEAVY Duty	5RW 5RW	DA-2516 DA-2524	2 to 4 4 to 6	4RW 5F 4RW 5F		5CT 5CT
	6RW 6RW	DA-2616 DA-2624	2 to 4 2 to 6	4RW 5F 4RW 5F		5CT 5CT
	7RW 7RW	DA-2716 DA-2724	2 to 4 2 to 6	4RW 5F 4RW 5F		5CT 5CT

^{*} When ordering, also state exact tip spacing and tip socket size. Example: DA-1508 - 1-1/2 - 5CT. (5CT means 5/8" diameter cap, 4CT means 1/2" diameter cap.

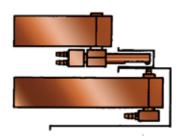
LIGHT DUTY



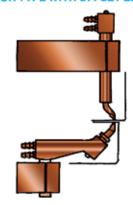
HEAVY DUTY


ILLUSTRATED WELDING APPLICATIONS

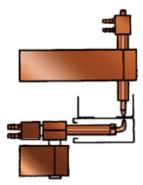
A. OFFSET WATER COOLED HOLDER NON-EJECTOR TYPE


SLIMLINE OFFSET HOLDER FOR NARROW CHANNEL

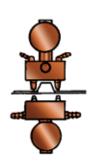
C. UNIVERSAL WATER COOLED HOLDER ASSEMBLY


STANDARD WATER COOLED HOLDER NON-EJECTOR TYPE

E. SPECIAL ADAPTED HOLDER FOR NARROW CHANNEL APPLICATION


SPECIAL ADAPTED HOLDER FOR SHORTEST OVERALL LENGTH

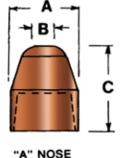
B. STANDARD WATER COOLED HOLDER EJECTOR TYPE WITH OFFSET ELECTRODE


OFFSET WATER COOLED HOLDER EJECTOR TYPE 30° HEAD WITH BENT ELECTRODE

D. STANDARD WATER COOLED HOLDER EJECTOR TYPE

UNIVERSAL WATER COOLED HOLDER ASSEMBLY STRAIGHT "M" ADAPTOR WITH RADIUS BEND ELECTRODE

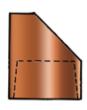
F. WATER COOLED
DUAL ELECTRODE HOLDER,
OR ADAPTOR, EQUALIZING PRESSURE
FOR TWO WELDS

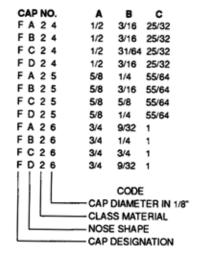


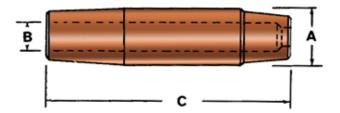
WELDING WHEELS

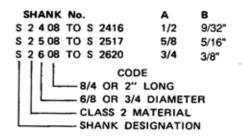
Worco Seam Welding Wheels are produced from forgings; a process that imparts the optimum properties for weld life. The wheels can be furnished as rough blanks, or finished machined to customer's specifications. They are available in RWMA Class 1, 2 or 3 alloys. For selection of alloys, consult our chart on page 3.

FEMALE CAPS AND ADAPTOR SHANKS

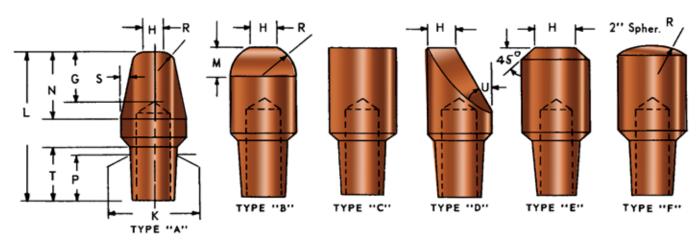


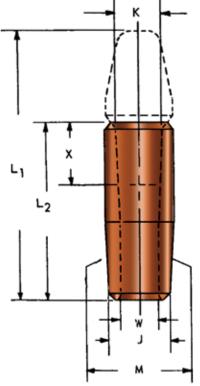

"B" NOSE




"C" NOSE

"D" NOSE

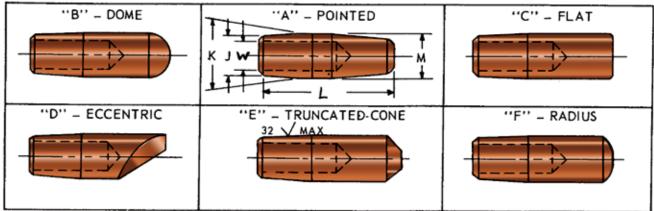



MALE CAPS AND ADAPTOR SHANKS

CAP ELECTRODES

	I	L	N	M	T	G	Р	K	I	Н	S	U	R
CAP NO.	MAJ. DIA.	±.010				± 1/32		+ .000	DRILL ±.010	±1/64			
A,B,C,D,E, or F24	.482	1-1/8	3/8	1/4	3/8	1/2	.285	.375	9/32	3/16	18°15'	30°	.15
A,B,C,D,E, or F25	.625	1-1/4	1/2	3/8	1/2	9/16	.390	.415	5/16	1/4	15°30'	30°	.21
A,B,C,D,E, or F26	.750	1-5/8	3/4	3/8	5/8	5/8	.500	.501	3/8	9/32	13°30'	45°	.25
A,B,C,D,E, or F27	.875	1-5/8	3/4	3/8	5/8	11/16	.500	.613	1/2	5/16	15°	45°	.31

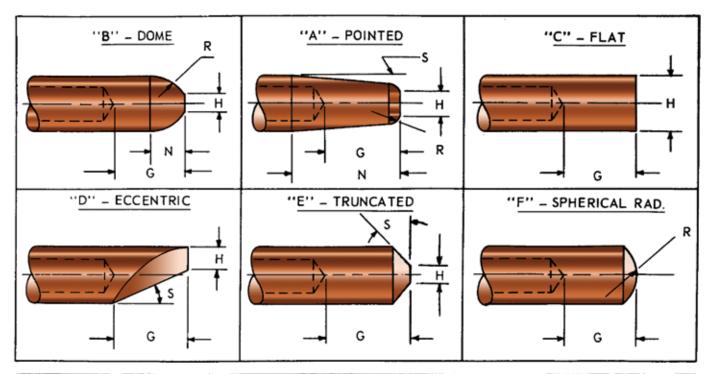
K SHANK L1 L2 MAJ. RWMA + .000 NIMBER 11 L2 NIMBER 1000 NIMBER 100



- 1 All chamfers .06 x 45°
- 2 First digit (2) indicates RWMA Class II Alloy. For Class I or Class III substitute numbers I or 3. Use G for Class 20.

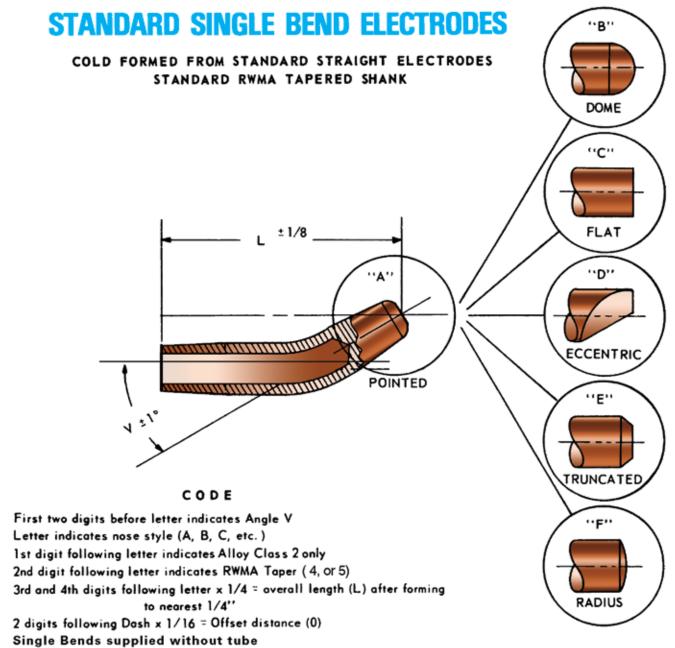
SHANK NUMBER	L۱	L ₂	MAJ. DIA.	RWMA Taper	K +.000 001	X MIN.	₩ ± .010	J MINOR Taper Dia.	M DIA. AT 1/2"
G2405	2	1-1/4							
G2406	2-1/4	1-1/2	1					l	
G2407	2-1/2	1-3/4	1						
G2408	2-3/4	2	1						
G2409	3	2-1/4	1						
G2410	3-1/4	2-1/2	.482	4	.374	13/32	9/32	.438 ± .001	.463±.001
G2411	3-1/2	2-3/4	1						
G2412	3-3/4	3	1						
G2413	4	3-1/4	1	1	-				
G2414	4-1/4	3-1/2	1						
G2415	4-1/2	3-3/4	1			1			
G2416	4-3/4	4	1						
G2505	2	1-1/4							
G2506	2-1/4	1-1/2	1	l					
G2507	2-1/2	1-3/4	1			l			
G2508	2-3/4	2	1	l		1			
G2509	3	2-1/4	1			1			
G2510	3-1/4	2-1/2	.625	5	. 414	17/32	3/8	.588 ± .001	.613±.001
G2511	3-1/2	2-3/4	1						
G2512	3-3/4	3	1	l	l				
G2513	4	3-1/4	1	1					
G2514	4-1/4	3-1/2	1	l		1			
G2515	4-1/2	3-3/4	1	1	1	1			
G2516	4-3/4	4	1	1	1	1			
G2608	3	2							
G2610	3-1/2	2-1/2]			l			
G2612	4	3	.750	6	.500	21./32	7/16	.706 ± .001	.731 ± .001
G2614	4-1/2	3-1/2]	Ì	1				
G2616	5	4	1		L				
G2708	3	2							
G2712	4	3	. 875	7	.612	21/32	1/2	819±.001	.844±.001
G2716	5	4	<u> </u>				<u> </u>		L

STRAIGHT ELECTRODES WITH TAPERED SHANKS



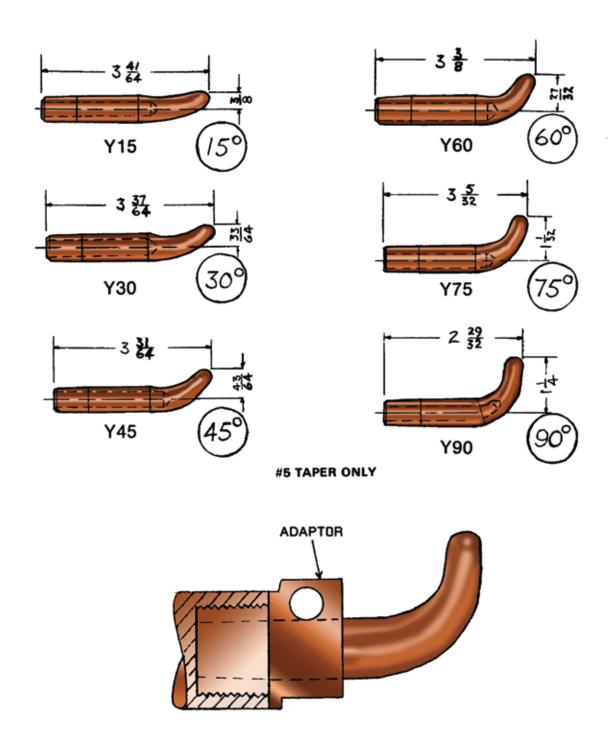
CODE LETTERS A, B, C, D, E or F, INDICATE NOSE SHAPE.
USE THE ONE APPROPRIATE LETTER IN YOUR PART NO. e.g. A2405, B2405, F2405, etc.

	L	м	т	w	ı	к
ELECTRODE NUMBER	OVERALL				MINOR	
RWMA CLASS II ALLOY*	LENGTH	MAJOR	RWMA	W.H.	TAPER	TAPER
POINTED, DOME, ETC.	TOL. ± .010	DIA.	TAPER	DIA.	DIA.	A 1/2"
A,B,C,D,E or F2405	1-1/4					
A,B,C,D,E or F2406	1-1/2				1	
A,B,C,D,E or F2407	1-3/4				İ	
A,B,C,D,E or F2408	2		1			
A,B,C,D,E or F2409	2-1/4				1	1
A,B,C,D,E or F2410	2-1/2				!	
A,B,C,D,E or F2411	2-3/4	.482 ± .002	4	9/32 ± .010	.438 ± .001	.463 ± .001
A,B,C,D,E or F2412 A,B,C,D,E or F2413	3					
A,B,C,D,E or F2413 A,B,C,D,E or F2414	3-1/4 3-1/2					
A,B,C,D,E or F2415	3-3/4		i i			1
A,B,C,D,E or F2416	4					
A,B,C,D,E or F2505	1-1/4					
A,B,C,D,E or F2506	1-1/2					
A,B,C,D,E or F2507	1-3/4					
A,B,C,D,E or F2508	2					
A,B,C,D,E or F2509 A,B,C,D,E or F2510	2-1/4 2-1/2	(25+ 002	5	2.00 . 010	500 . 000	
A,B,C,D,E or F2511	2-1/2 2-3/4	.625 ± .003	ادا	3/8 ± .010	.588 ± .001	.613 ± .001
A,B,C,D,E or F2512	3					
A,B,C,D,E or F2513	3-1/4					
A,B,C,D,E or F2514	3-1/2					
A,B,C,D,E or F2515	3-3/4					
A,B,C,D,E or F2516	4					
A,B,C,D,E or F2606	1-1/2					
A,B,C,D,E or F2608	2					
A,B,C,D,E or F2610	2-1/2	.750 ± .003	6	7/16 ± .010	.706 ± .001	.731 ± .001
A,B,C,D,E or F2612 A,B,C,D,E or F2614	3 3-1/2					·
A,B,C,D,E or F2616	4					
A, B, C, B, E 07 7 2010	4					
A,B,C,D,E or F2706	1-1/2					
A,B,C,D,E or F2708	2		- 1	l		
A,B,C,D,E or F2710	2-1/2	.875 ± .003	7	1/2 ± .010	.819 ± .001	.844 ± .001
A,B,C,D,E or F2712	3			l		
A,B,C,D,E or F2714 A,B,C,D,E or F2716	3-1/2		- 1			
7,5,C,D,E 01 F2/10	4 1					


ELECTRODE NOSE CONFIGURATIONS

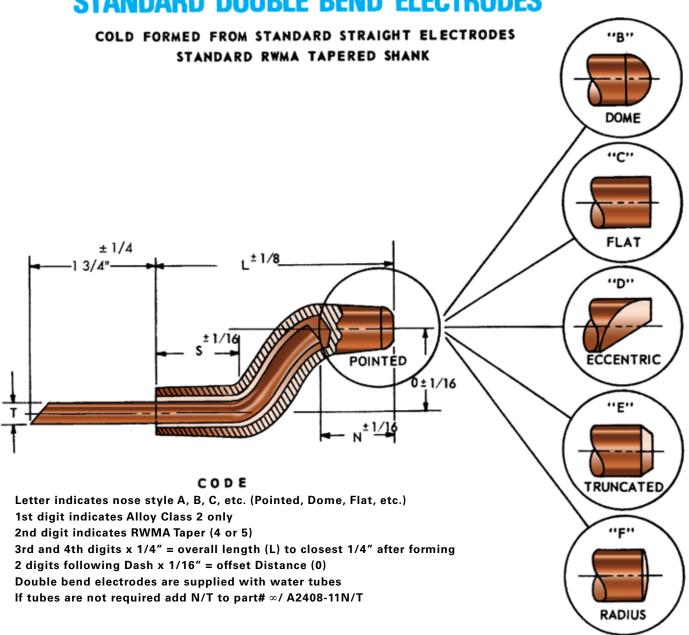
NOSE STYLE	RWMA TAPER	MAJOR DIA.	G DIST. TO FACE ± 1/32	H DIA. FLAT ± 1/64	N NOSE LENGTH	R RADIUS	S ANGLE ±30'
A Pointed				3/16	3/4	.16	8°
B Dome				3/16	1/4	.16	
C Flat				31/64	-	-	-
D Eccentric	4	. 482	1/2	3/16	_	_	30°*
E Truncated				3/16	_	-	45°
F Radius				-	-	2"	-
A Pointed				1/4	7/8	.22	6°
B Dome				1/4	3/8	. 22	_
C Flat	5	. 625	3/4	5/8			-
D Eccentric				1/4	-	-	30°*
E Truncated				1/4	_	_	45°
F Radius				-	-	2"	-
A Pointed				9/32	1''	. 28	6°
B Dome				9/32	3/8	. 28	-
C Flat	6	. 750	3/4	3/4	_	_	_
D Eccentric				9/32	-	_	30°
E Truncated				9/32	_	_	45°
F Radius				_	-	2"	-
A Pointed				5/16	1-1/8	. 34	6°
B Dome			ĺ	5/16	3/8	. 34	-
C Flat	7	. 875	3/4	7/8	-	_	-
D Eccentric				5/16	-	-	30°
E Truncated				5/16	_	-	45°
F Radius				_	-	2"	_

*Use 40° for electrodes under 1-1/2" long

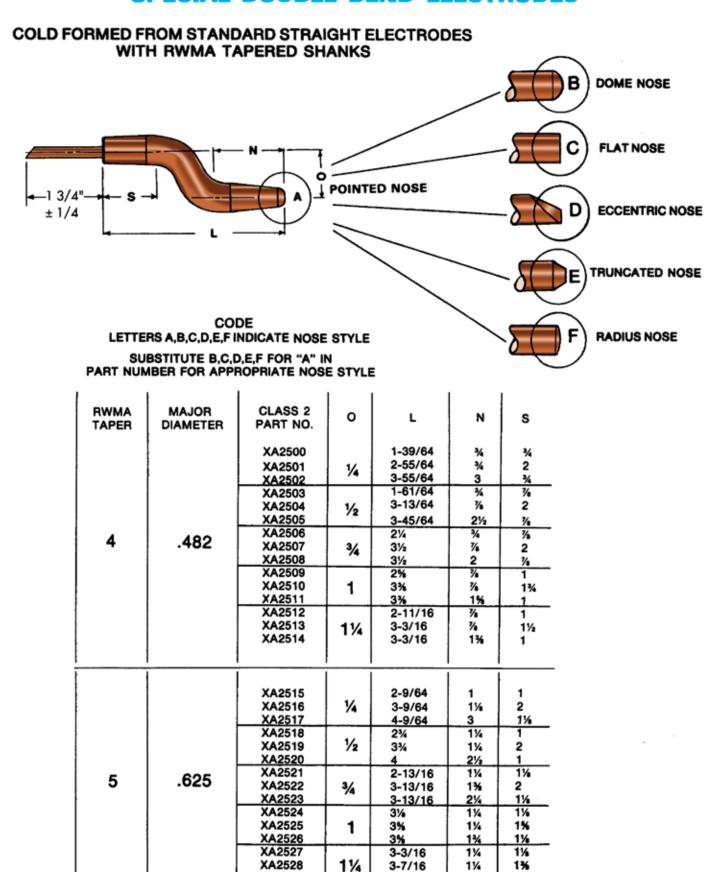


EXAMPLES

ELECTRODE NUMBER	ANGLE V	NOSE STYLE	RWMA TAPER	L O.A.L.	O OFFSET	T WATER TUBE DIA.
15B2410-07	15°	B Dome	4	2-1/2	7/16	.182
25C2511-08	25°	C Flat	5	2-3/4	1/2	.245
30D2512-10	30°	D Eccentric	5	3	5/8	.245
45F2513-12	45°	F Radius	5	3-1/4	3/4	.245


RADIUS BEND ELECTRODES

Radius Bend Electrodes are cold bent from 5/8 diameter RWMA Class 2 Bar Stock and are furnished with a 5/16 diameter water hole. They are used with an adapter that screws into a holder and clamps to the electrode. This arrangement affords a rigid assembly.

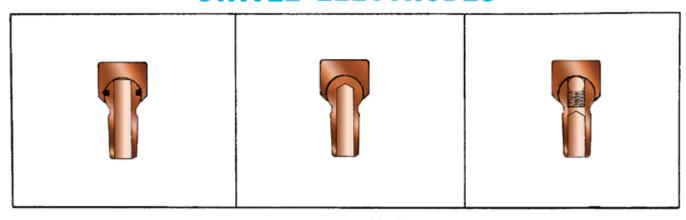


EXAMPLES

ELECTRODE NUMBER	NOSE STYLE	ALLOY CLASS	RWMA TAPER	0.Å.L.	O OFFSET	N NOSE LENGTH	S SHANK LENGTH	T WATER TUBE DIA.
B2410.00	В	_		21/2	0/14	2/4	7/0	100
B2410-09	Dome	2	4	2-1/2	9/16	3/4	7/8	.182
	С							
C2511-12	Flat	2	5	2-3/4	3/4	7/8	1	.245
D2512-16	D Eccentric	2	5	3	1	7/8	1-1/8	.245
F2513-20	F Radius	2	5	3-1/4	1-1/4	7/8	1-5/16	.245

SPECIAL DOUBLE BEND ELECTRODES

XA2529

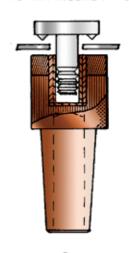

11%

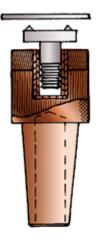
11/2

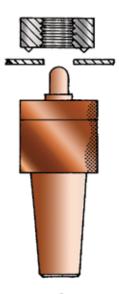
3-7/16

SWIVEL ELECTRODES

"O" RING TYPE	BLIND TYPE	SPRING TYPE
"PO" SERIES	"P" SERIES	"PS" SERIES
PO74	P74	PS74
PO75	P75	PS75
PO84	P84	PS84
PO85	P85	PS85
PO104	P104	PS104
PO105	P105	PS105
RWMA TAPE	P55CT	
1 1		(ALL ELECTRODES ARE 2" LONG)


STUD AND NUT WELDING ELECTRODES

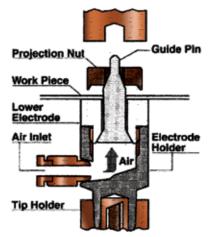

SPECIAL SWIVELS MADE TO ORDER (ie: male cap taper, female cap taper, etc.)

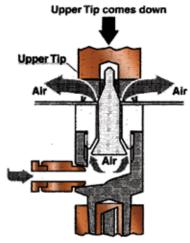

(MADE TO SPECIFIC REQUIREMENT)

- 1) WELDING A STUD THROUGH A HOLE IN SHEET METAL
- 2) WELDING A STUD DIRECTLY TO FACE OF SHEET METAL
- 3) WELDING A NUT TO SHEET METAL WITH AN ALIGNING ELECTRODE

THESE ELECTRODES CAN BE MADE TO FIT ANY RWMA TAPER OR SPECIAL MOUNTING ARRANGEMENT TO SUIT CUSTOMERS APPLICATION.

:


.



PROJECTION WELDING GUIDE PINS

Mechanism of Projection Welding Pins

The air cooling system can increase the life of the electrode and pin.

Before Welding

While Welding

Standard Type Guide Pin

Model	Nut (mm)	Ød (mm)	ØA (mm)
WTP-M04	M4	4.8	12
WTP-M05	M5	5.8	12
WTP-M06	M6	6.8	12
WTP-M07	M8	7.8	12
WTP-M08	M8	8.8	12
WTP-M09	M8	9.8	12
WTP-M10	M10	10.8	16
WTP-M11	M10	11.8	16
WTP-M12	M12	12.8	16
WTP-M13	M12	13.8	16

Model	Nut (mm)	I/D	O/D	THREAD (mm)
WCN-M04	M4	5.0	25	M18:P=1.5
WCN-M05	M5	6.0	25	M18:P=1.5
WCN-M06	M6	7.0	25	M18:P=1.5
WCN-M07	M8	8.0	25	M18:P=1.5
WCN-M08	M8	9.0	25	M18:P=1.5
WCN-M09	M8	10.0	25	M18:P=1.5
WCN-M10	M10	11.0	30	M22:P=1.5
WCN-M11	M10	12.0	30	M22:P=1.5
WCN-M12	M12	13.0	30	M22:P=1.5
WCN-M13	M12	14.0	30	M22:P=1.5

Electrode Holder Class 2 is standard, other materials available upon request

Model	Taper	O/D	THREAD (mm)
WN H-A4	MT#1	25	M18:P=1.5
WN H-A5	MT#2	25	M18:P=1.5
WN H-B5	MT#2	30	M22:P=1.5

STUD & WELD NUT HEADS

Standard Weld Nut Pins

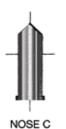
Nose Styles

Series _____ (Select series 2, 3 or 4)

Nose _____ (Select nose style A, B, C or D)

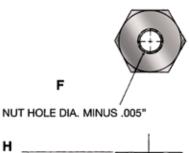
Information required to order a standard weld nut pin:

E _____ " (Stamping hole dia. minus .005")


F " (Nut hole dia. minus .005")

F " (Nut hole dia. minus .005")
G " (Stamping thickness)

H _____ " (Nut thickness, including projections)



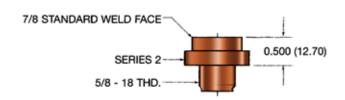
Application Sizes

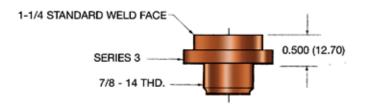
NOTE: NUT THICKNESS INCLUDES PROJECTIONS

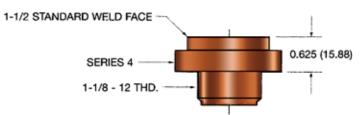
Standard Weld Nut Heads

Information required to order heads for stud welding applications:

Stud Diameter or Thread Size

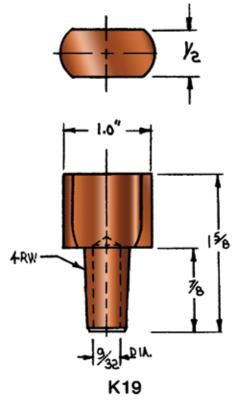

Required Weld Face Diameter

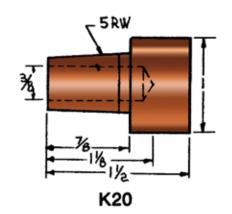

Series #

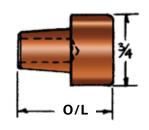


Max. Hole III Stamping
0.377 (9.58) ID
0.627 (15.93) ID
0.752 (19.10) ID

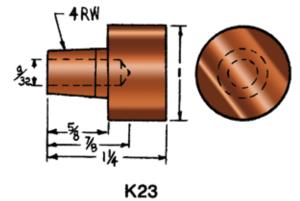
Special weld nut electrodes are available for larger IDs and areas with clearance restrictions.

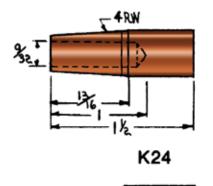


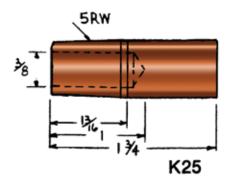


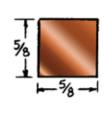


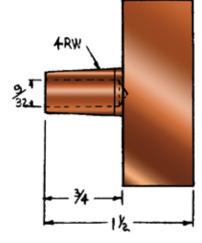
WORC()

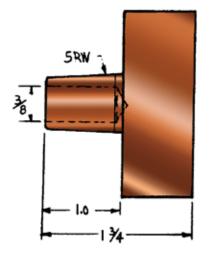

IRREGULAR ELECTRODES FULL SIZE

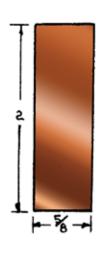


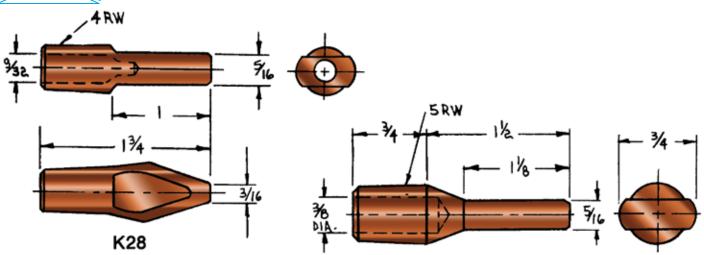


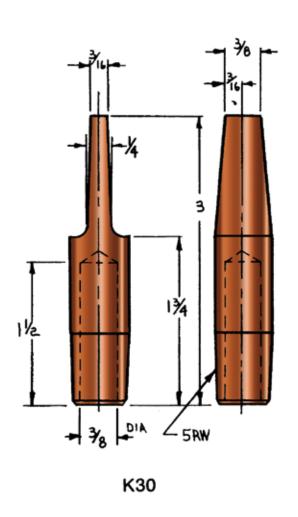

K21-4RW 1-1/4 O/L K22-5RW 1-1/2 O/L

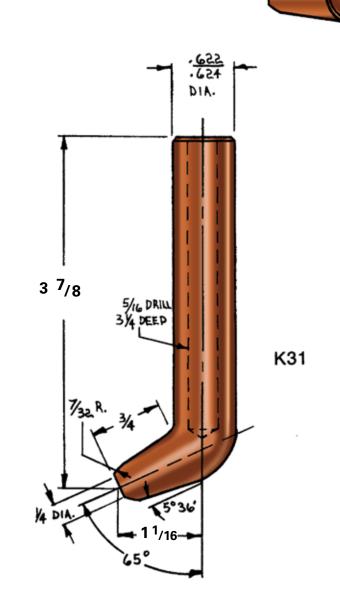




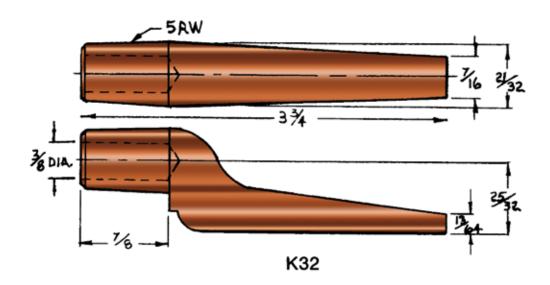


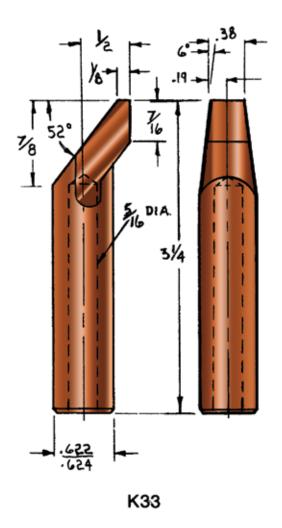

K26

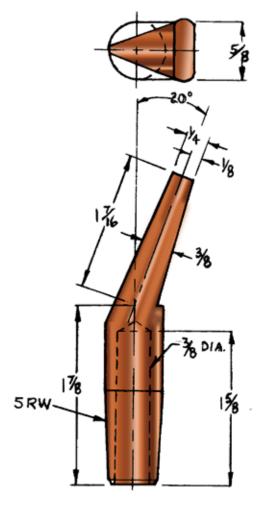




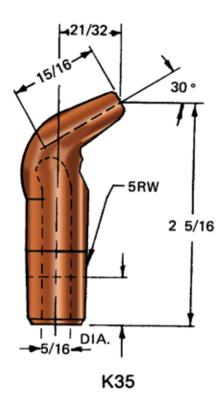
IRREGULAR ELECTRODES FULL SIZE

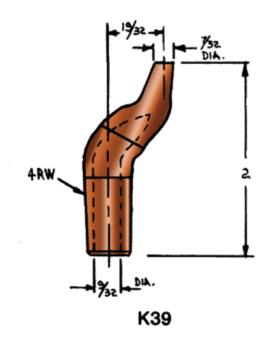


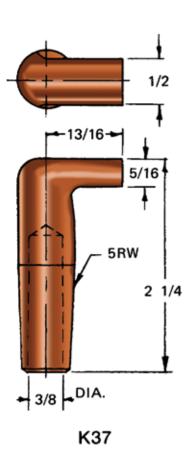



K29

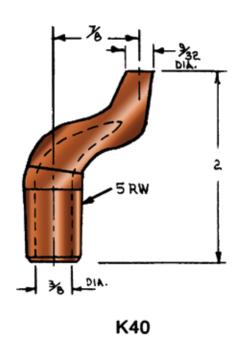
IRREGULAR ELECTRODES FULL SIZE

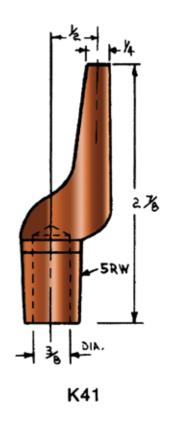


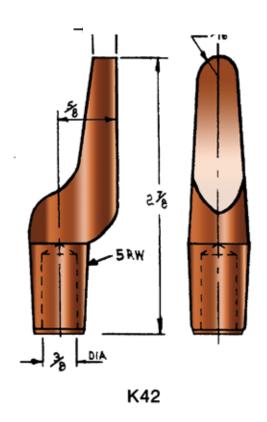



K34

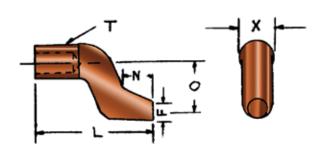
IRREGULAR ELECTRODES FULL SIZE

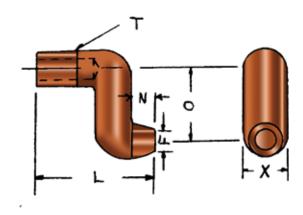




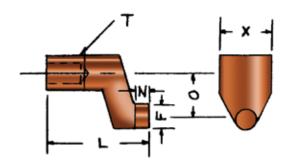


IRREGULAR ELECTRODES

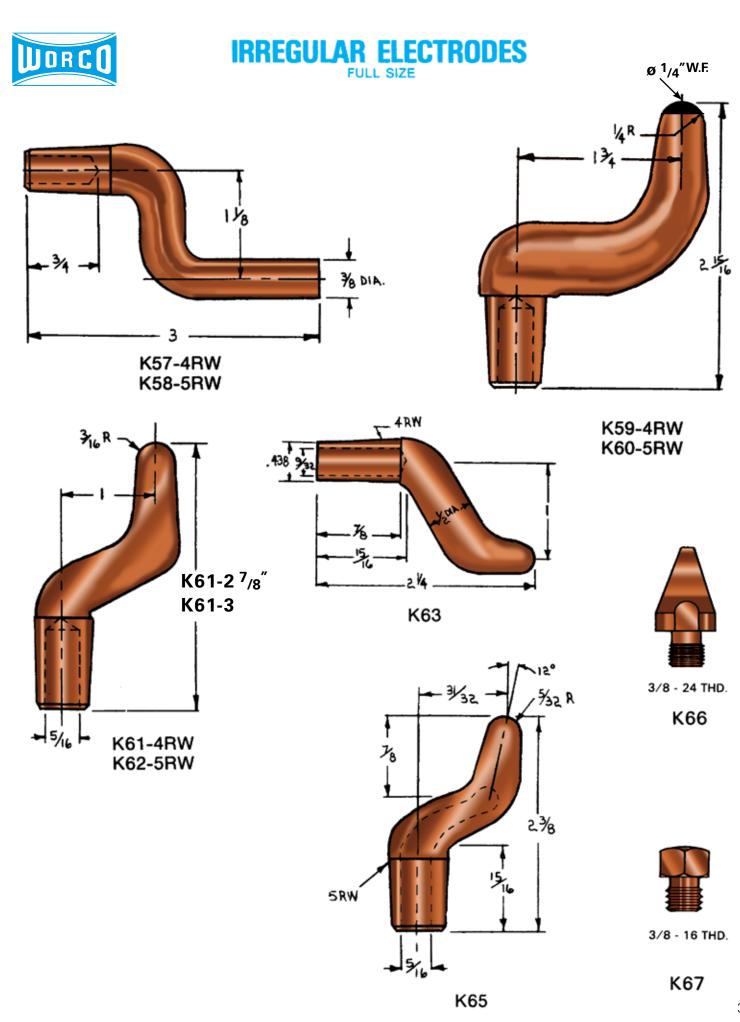




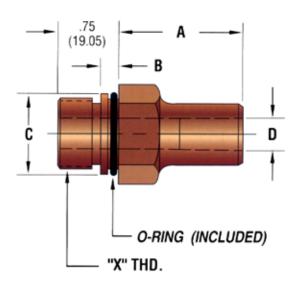
IRREGULAR WELDING ELECTRODES


Offset Electrodes with Tapered Shanks

Part No.	L Overall Length	T Taper	N Mose Length	O Offset	Welding Face Dia.
K45 K46 K47	2 23/6	No. 4 No. 5 No. 7	¾	1942 78	1/4 1/6 1/2


11/4" Offset Electrodes with Tapered Shanks

Part No.	L Overall Length	T	N Nose Length	Offset	X Thick- ness	F Welding Face Dia.
K48 K49 K50	2 2% 2	No. 4	% % %	11/4	34	¾
K51 K52 K53	2%	No. 7	¾ ¾ ¾		3/4	1/2


²⁵/₃₂" Offset Electrodes with Tapered Shanks

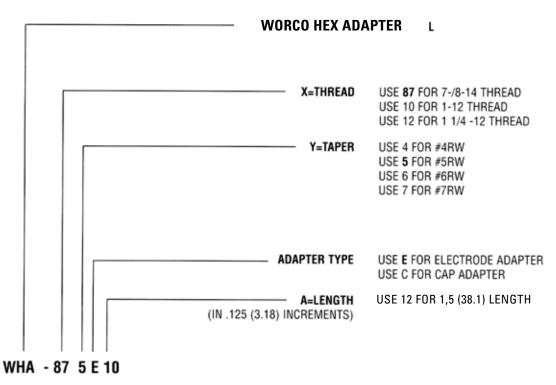
Part No.	L Overall Length	T Taper	Nose Length	O Offset	X Thick- ness	F Welding Face Dia.
K54		No. 4				
K56	1%	No. 5	1/4	25/32	% €	7∕16

HEX ADAPTORS - STRAIGHT THREAD

			Minimum .	A
TAPER NO.	D	7/8-14	1-12	1-1/4-12
#4RW	0.463 (11.76)	0.25	0.25	0.25
#5RW	0.625 (15.88)	0.25	0.25	0.25
#6RW	0.750 (19.05)	1.13	0.25	0.25
#7RW	0.875 (22.35)	1.38	1.25	0.25

THREAD	"Х"	В	C	HEX	0-RING
7/8-14	87	0.25 (6.35)	1 (25.40)	1-1/4	D-117
1-12	10	0.25 (6.35)	1.13 (28.58)	1-1/4	D-119
1-1/4-12	12	0.25 (6.35)	1.38 (34.93)	1-1/2	D-123

FIGURE 4-10

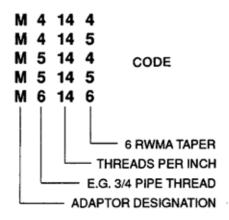

. Dimensions Shown Are: inches (mm).

EXAMPLE:

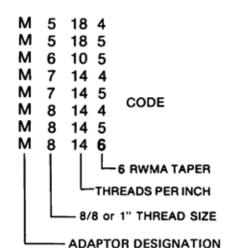
WHA - 875E12

HEX ADAPTER, 7/8-14 THD., #5 RW TAPER, ELECTRODE ADAPTER, LENGTH = 1.5 (38.10)

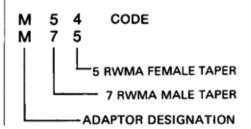
EXAMPLE EXPLANATION CODING


"M" ELECTRODE ADAPTORS

MALE PIPE THREAD TO FEMALE RWMA TAPER


EXTENDED LENGTH AVAILABLE

MALE STRAIGHT THREAD TO FEMALE RWMA TAPER



MALE RWMA TAPER TO FEMALE RWMA TAPER

REFRACTORY METALS

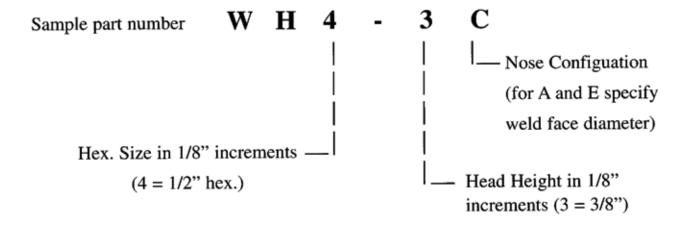
Refractory Metals are a group of metal compositions whose elements consist of Tungsten, Molybdenum, and their Carbides, combined with Copper. Combinations of these elements produce metals of high wear resistance and high strength at elevated temperatures. They also provide good thermal and electrical conductivity. They are suitable as die inserts and facings for projection, flash, and butt-welding, and some electrical contact applications: RWMA Class 11, Class 13, and Class 14 are the most common classifications in this category. For additional information on refractory metals for welding, refer to page 2.

REFRACTORY METAL BARS AND INSERTS

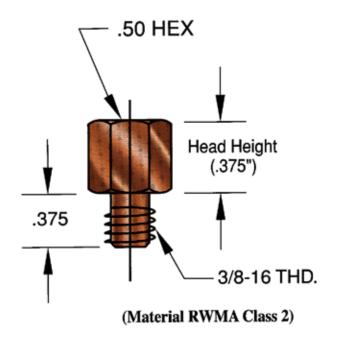
REFRACTORY FACED ELECTRODES ARE ILLUSTRATED BELOW

B 2408-11R

C 2408-11R


E 2408-11R

For Part No. Identification of electrodes, use page 11 and suffix the number with the appropriate class facing and the letter "R" for Refractory.



Hexagon Threaded Caps

WORCO standard hexagon threaded caps manufactured from RWMA Class 2 copper are available in 1/2" hex. with a 3/8-16 thread, and 5/8" hex. with a 7/16-14 thread. Nose configurations are A (pointed), C (flat), E (45 deg. truncated), and F (radius). Special threaded caps can be made to suit customer's exact requirements material, hex size, thread and nose configuration.

EXAMPLE — WH4-3C

BAR STOCK SIZES & WEIGHTS

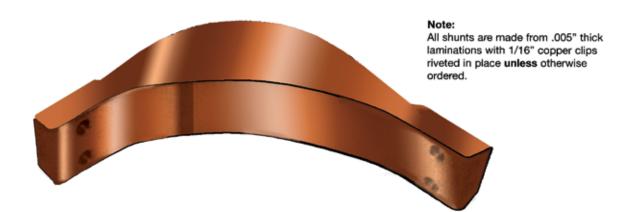
Solid Rounds

	Clo	ss 2		Clas	ss 3	
Diameter	lbs./in.	lbs./ft.	Tolerance ± (Dia.)	lbs./in.	lbs./ft.	Tolerance ± (Dia.)
%" %" %" %" %"	.004 .009 .016 .024 .035	.05 .11 .19 .29	.002 .002 .002 .002	.024	.29	.003
%" .482" ½" %"	.048 .058 .063 .079	.58 .70 .76 .95	.002 .002 .002 .002	.062	.74	.003
%" %" %"	.098 .142 .192 .252	1.18 1.70 2.30 3.02	.622/.624 .747/.749 .872/.874 .003	.096 .140 .189 .248	1.15 1.68 2.27 2.98	.004 .004 .004 .004
1%" 1%" 1%" 1%"	.318 .393 .476 .566 .770	3.81 4.72 5.71 6.79 9.24	.004 .004 .004 .004	.314 .388 .468 .559	3.77 4.66 5.62 6.71 9.12	.005 .005 .005 .005 .005
2" 2½" 2½" 2½"	1.005 1.273 1.572 1.901	12.06 15.27 18.86 22.81	.004 .004 .004 .006	.992 1.257 1.552 1.877	11.90 15.08 18.62 22.52	.005 .005 .005 .007
3" 3¼" 3¼" 3¾" 3½"	2.262	27.14 34.36	.006	2.233 2.424 2.623 2.826 3.042	26.80 29.09 31.48 33.91 36.50	.007 .040 .040 .040
3%" 3%"	3.303 3.774	39.63 45.29	.060 .060	3.261 3.715	39.13 44.58	.060
4" 4%" 4%" 4½"	4.277 4.811	51.32 57.73	.080 .080	3.973 4.222 4.736 5.040	47.67 50.66 56.83 60.48	.060 .080 .080
4¾" 5¼"	5.377	64.52	.080	5.308 6.519	63.67 78.23	.080 .080

Hexagon Rod

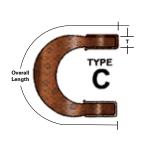
01	Cla	ss 2	Tolerance ±	
Size	lbs./in.	lbe./ft.	(across flats)	
1/2"	.069	.837	.005	
5/4"	.157	1.88	.005	
3/4"	.183	2.20	.005	
7/6"	.212	2.54	.005	
1" "	.276	3.33	.005	
1 1/6"	.351	4.21	.006	
1 1/4"	.433	5.20	.006	
1 1/2"	.625	7.50	.006	

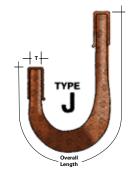
Rectangles

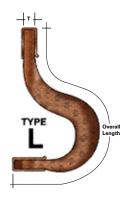

Size	Clas	ss 2	Thickn Toleran (unless off notes	ce ± nerwise	Cla	ss 3	Thickn Toleran (unless off note	ce ± nerwise
	lbs./in.	lbs./ft.	Thickness	Width	lbs./in.	lbs./ft.	Thickness	Width
½" x 1" ½" x 1½" ¼" x 2" ¼" x 3"	.080 .120 .160 .240	.96 1.44 1.92 2.88	.006 .007 .007 .007	.007 .009 .009 .015	.079 .118 .158 .237	.95 1.42 1.90 2.84	.007 .008 .008 .009	.008 .010 .010 .015
%" × ¾" %" × 1" %" × 1¼"	.090 .120	1.08 1.44	.006 .006	.007 .007	.180	2.16	.008	.010
½" x ½" ½" x ¾" ½" x 1" ½" x 1½" ½" x 2" ½" x 3"	.080 .120 .160 .240 .320 .480	.96 1.44 1.92 2.88 3.84 5.76	.005 .006 .006 .007 .007	.005 .007 .007 .009 .009	.079 .118 .158 .237 .316 .474	.95 1.42 1.90 2.84 3.80 5.69	.006 .007 .007 .008 .008	.006 .008 .008 .010 .010
%" × %" %" × 34" %" × 1" %" × 1\/2"	.125 .150 .200 .300	1.50 1.80 2.40 3.60	.006 .006 .006 .007	.006 .007 .007 .009	.123 .197 .296 .395	1.48 2.37 3.55 4.74	.007 .007 .008 .008	.007 .008 .010 .010
%" × %" %" × 1" %" × 1½" %" × 1¾" %" × 2" %" × 2½" %" × 3"	.180 .240 .360 .420 .480 .600	2.16 2.88 4.32 5.04 5.76 7.20 8.64	.006 .006 .007 .007 .007 .008	.006 .007 .009 .009 .009 .013	.178 .237 .355 .474 .622 .711	2.14 2.84 4.26 5.69 7.94 8.53	.007 .007 .008 .008 .009	.007 .008 .010 .010 .013 .016
1" ×1" 1" ×1½" 1" ×1½" 1" ×2½" 1" ×2½"	.320 .400 .480 .640 .800	3.84 4.80 5.76 7.68 9.60 11.52	.006 .007 .007 .007 .008	.006 .009 .009 .009 .013 .015	.316 .442 .474 .632	3.79 5.30 5.69 7.58	.006 .007 .007 .007 .008	.006 .009 .009 .009 .013 .015
1¼" x 1¼" 1¼" x 1½" 1¼" x 1¾" 1¼" x 2"	.500 .600 .700 .800	6.00 7.20 8.40 9.60	.007 .007 .007 .007	.007 .009 .009	.494 .601	5.92 7.21	.007 .007 .007 .007	.007 .009 .009 .009
1½" x 1½" 1½" x 2" 1½" x 3" 1¾" x 2" 1¾" x 3"	.720 .960 1.440 1.120	8.64 11.52 17.28 13.44	.007 .007 .009	.007 .009 .015	.711 .948 1.422 1.100 1.659	8.53 11.38 17.06 13.20 19.91	.007 .007 .009 .007	.007 .009 .015
2" x 2" 2" x 3"	1.280	15.36	.009	.009	1.264	15.17	.009	.009

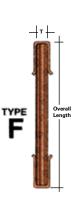
Class 2 Forged and Machined Plate

Size	Pounds Per Square Inch	Estimated Pattern Weight/Lbs.	Thickness Tolerance
1" × 36" × 72"	.330	890	+1/4"-0"
11/3" x 36" x 72"	.490	1300	+1/6"-0"
2" x 36" x 72"	.650	1725	+1/6"-0"
2½" x 36" x 72"	.810	2150	+1/6"-0"
3" x 36" x 72"	.970	2550	+1/6"-0"
4" × 36" × 72"	1.290	3400	+1/6"-0"




LAMINATED SHUNTS




Specify Hole Pattern at both ends

- T Indicates thickness of laminations only
- O.L. Indicates outside leaf length

Type of shunt

C, J, L, F or special

Length of Longest Sheet

Overall Length

Width of Laminations

Thickness

(less clip)

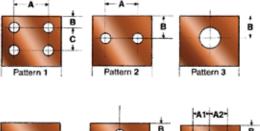
Pattern

1, 2, 3, 4, 5 or 6

Hole Size

or

Bolt Size

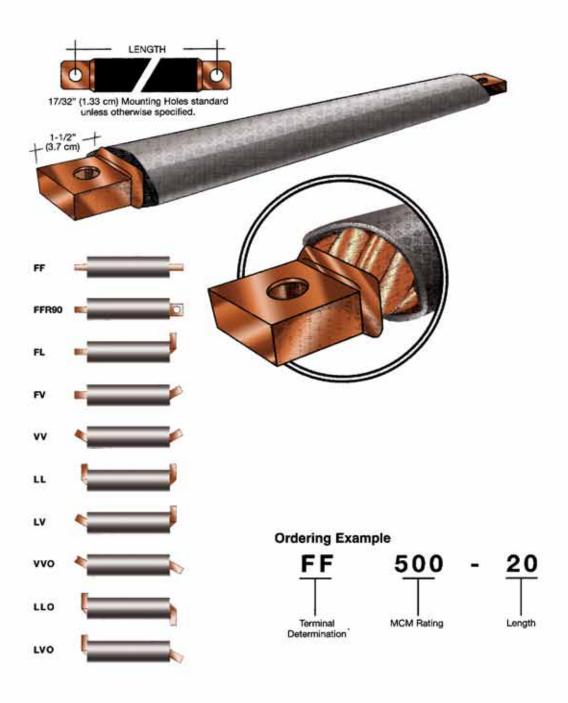

Hole Pattern Dimension

A ______ A2 _____ B

C

Note:

When ordering, please supply a drawing or sketch specifying shunt thickness, width, outside leaf length and exact hole diameter location.



AIR COOLED WELDING CABLES

Specify the MCM size, length and lug combination and quantity of cables desired

WELDING ACCESSORIES

QUICK CONNECTOR WITH FEMALE CONNECTION

1/8" F.P.T. WEAC 12 1/4" F.P.T. WEAC 12B

QUICK CONNECTOR PLUG

1/8" M.P.T. WEAC 14 1/4" M.P.T. WEAC 14B

WATER HOSE

WEAC 26

3/8" INSIDE DIAMETER TO FIT NIPPLE WEAC 16

HOSE CLAMP

WEAC 30

WATER NIPPLE

Standard 3/8" Hose

1/8" M.P.T. WEAC 16

HOSE SPLICER

3/8" I.D. HOSE WEAC 18

FLEXIBLE WATER TUBE

.280 O.D. WEAC 32 .250 O.D. WEAC 34 .280 O.D. WEAC 36

TIP DRESSER

WEAC 20

To remove "mushroomed" effect from spot welding tips and bring dome and pointed tips back to approximately their original shape. This can be done on the job without removing tip from holder.

SS - 30 WEAC 48 ANTI-SEIZE COMPOUND

REAMERS

4 RWMA CAP TAPER WEAC 39A 5 RWMA CAP TAPER WEAC 39B 4 RWMA TAPER WEAC 40 **5 RWMA TAPER** WEAC 42

6 RWMA TAPER WEAC 43 7 RWMA TAPER WEAC 44

225 ML BRUSH - TOP CAN

Micro Ohm Meter: The Micro Ohm Cable Tester (MOCT7550) measures from 3 to 2000 micro ohms and can be used to measure the resistance of secondary weld circuit components. These include kickless cables, water cooled jumpers, laminated shunts, air cooled jumpers, weld gun castings, weld tips joints, weld transformers, oxidation in joints, connectors, or any component that can increase in residence. This Meter is a tool that can be used for both preventive maintenance and for troubleshooting the secondary welding circuit.

WELD FORCE GAUGES

ALL STANDARD GAUGES READ DIRECTLY IN LB-FORCE OR KILOS-FORCE. DIAL FACE MAY READ PSI, ACTUAL-Pounds Force

GUN ARM REPAIR

Worton's Repair Services offer customers:

BEFORE

AFTER

Typical orders include the repair of:

*damaged male/female cap tapers

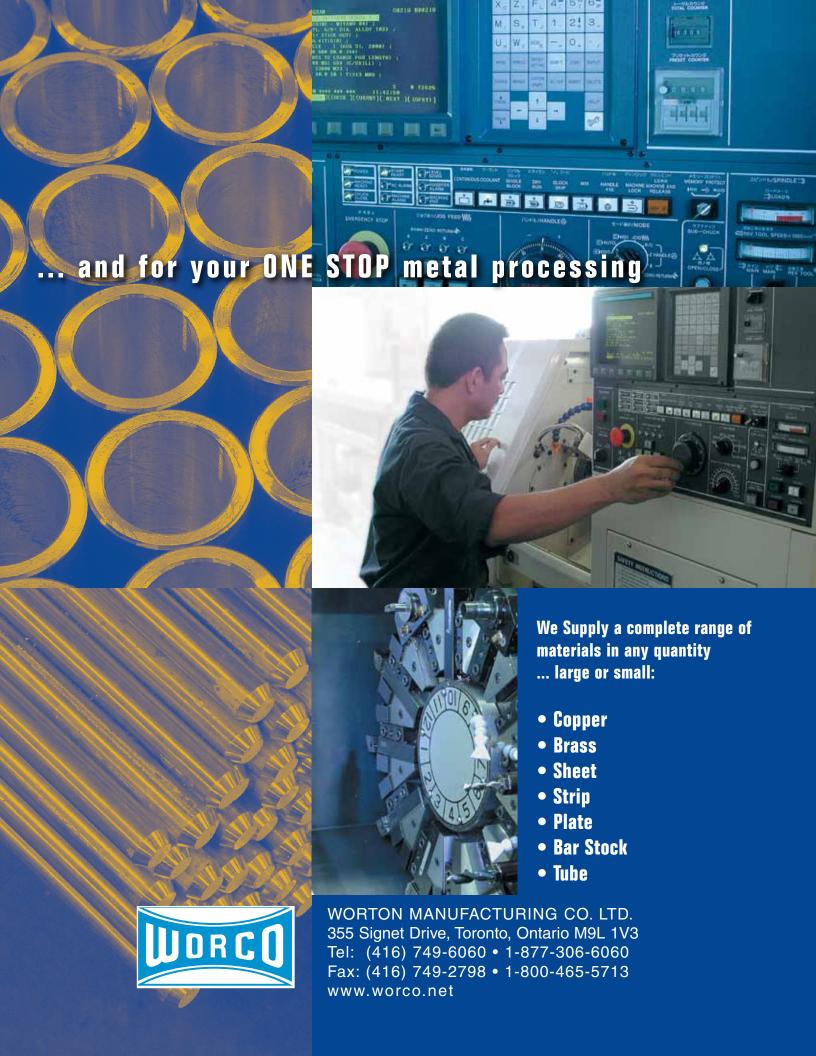
*damaged threads

*damaged contact pads

*water tubes and leaks

Helpful Suggestion

DO'S	DON'TS
1. Use the proper electrode material for the job you are doing.	Never use unidentified electrodes or electrode materials.
2. Use standard electrodes wherever possible.	2. Avoid special, offset or irregular tips when
Use the most suitable tip diameter for the thickness of stock being welded.	the job can be done with a standard straight tip.
 Use open sight drains to observe more readily the water flow through the holders. 	Don't use small tips on heavy gauge welding jobs or large tips on small work.
Connect the water inlet hose to the proper holder inlet so that the water flows through the center cooling tube first.	 Don't forget to turn on the cooling water full force before starting to weld.
 Internally cool the spot welding tips with cool water flowing at a rate of at least 1/2 gallons per 	Never use water hose that will not fit the holder water connection nipples snugly.
minute through each tip.	Do not allow water connections to become leaky, clogged or broken.
7. Be sure the internal water cooling tube of the holder projects into the tip water hole to within 1/4" of the tip hole bottom.	7. Avoid using holders with leaking or deformed tapers.
8. Adjust the internal water cooling tube of the holder to the proper height when changing to a different length tip.	8. Never use electrode holders that do not have an adjustable internal water cooling tube.
9. Be sure top of adjustable water cooling tube in holders is cut at an angle so as to avoid jamming tip down and shutting water off.	9. Do not permit adjustable water tube to be "frozen" by accumulation of deposits. A few drops of oil periodically will keep the tube free.
10. Place a thin film of cup grease on the tip taper prior to inserting in the holder, to make it easier to remove.	10. Do not allow electrodes to remain idle in tapered holder seats for extended periods.
Use ejector type holders for easy removal of tips and to avoid damage to tip tapers.	11. Don't use pipe wrenches or similar tools in removing electrodes.
Keep the tip taper and holder taper clean, smooth and free of foreign deposits.	Avoid using white lead or similar compounds to seal a leaking taper.
13. Dress spot welding electrodes frequently enough to maintain the quality of the welds.	 Never permit a spot welding tip to mushroom enough to make dressing difficult.
 Dress electrodes in a lathe to their original contour whenever possible. 	14. Never dress electrodes with a coarse file.
15. Use a rawhide or rubber mallet for striking holder or tips in aligning operations.	15. Don't pound on the holder or tip with a steel hammer in aligning the welder arms.
Provide flood cooling on both sides of the seam welding wheel.	16. Avoid the use of seam welder wheels too thin to stand the heat or pressure of your job.
17. Use properly designed knurling wheels to maintain proper seam welding wheel shape.	Do not permit seam welding wheel to run off the corners of the work being welded.


CUSTOM MANUFACTURING

C.N.C. MACHINING

"TAKE A TIP FROM WORCO"

