Spot Welding Data **Optimum Conditions Schedules For Spot Welding** Low Carbon Steel – SAE 1010

Thick- ness of Thinnest	Flat Face		Radius Face			Weld Time (Cycles) (60	Hold	Welding	Weld Shear Strength (For Steels Having Ultimate Tensile Strength of 90,000	Diameter of Fused Zone (Approx.)	Minimum Weld Spacing	Minimum Contacting Overlap
Outside 'Piece (Inches)	Maximum d (Inches)	Min. D (Inches)	Radius R (Inches)	Recommended Minimum Standard Electrode Size	Weld Force (Lbs.)		Time (Cycles) Min.	Current (Amps.) (Approx.)	psi and below) Minimum Strength (Lbs/Weld)	Dw (Inches)	S (Inches)	L (Inches)
0.010 0.021 0.031 0.040 0.050	0.125 0.187 0.187 0.250 0.250	1/2 1/2 1/2 5/8	2 2 2 3 3	4RW 1MT 4RW 1MT 4RW 1MT 5RW 2MT 5RW 2MT	160 244 326 412 554	6 8 10	5 8 10 12 16	4,000 6,500 8,000 8,800 9,600	130 300 530 812 1,195	0.113 0.139 0.161 0.181 0.210	1/4 3/8 1/2 3/4 7/8	3/e 7/16 7/16 1/2 9/16
0.062 0.078 0.094 0.109 0.125	0.250 0.312 0.312 0.375 0.375	5/8 5/8 7/8 7/8	33444	5RW 2MT 6RW 2MT 7RW 3MT 7RW 3MT 7RW 3MT	670 903 1,160 1,440 1,760	25 34 45	20 30 35 40 45	10,600 11,800 13,000 14,200 15,600	1,717 2,365 3,054 3,672 4,300	0.231 0.268 0.304 0.338 0.375	1 1 1/8 1 1/4 1 3/16 1 1/2	5/8 11/16 3/4 13/16 2/8
0.156 0.187	0.500	⁷ /8 1	6	Male or Female Threaded	2,500 3,340	93 130	50 55	18,000 20,500	6,500 9,000	0.446 0.516	1³/4 2	1 1'/2
0.250	0.750	1'/4	6	Male or Fernale Threaded	5,560	230	60	26,000	18,000	0.660	4	11/2

PERMISSIBLE SCHEDULE VARIATIONS FOR SPOT WELDING LOW CARBON STEEL

Low Carbon Steel Spot Welding Data Chart – Single Impulse Welding

DA			O ALL CL WELDS	ASSES	WELDING SET-UP FOR BEST QUALITYCLASS A WELDS						WELDING SET-UP FOR MEDIUM QUALITYCLASS B WELDS				WELDING SET-UP FOR GOOD QUALITY-CLASS C WELDS				
Thick- ness of Each of the Two Work Pieces Inches	Diam.d	Max. d	Min. Weld Spacing (Note 4) Inches	Min. Con- tacting Overlap (Note 6) Indhes	Wold Time (Note 7) Ovclas	Elec- trode Force Pounds	Weld- ing Cur- rent Amos.	Dem. of Fused Zone	Average Tensie Shear Strength ±14% Pounds	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Cur- rent Amps.	Dam, of Fused Zone	Average Tensile Shear Strength ±17% Pounds	Weld Time (Note 7) Cycles	Elec- trode Force Pounds	Weld- ing Current Amos	Dam, of Fused Zone	Average Tensie Shear Strength ±20% Pounds
.010 .021 .031 .040 .050		1/8 3/16 3/16 1/4 1/4	14 m 14 m 14 m 14 m 14 m 14 m 14 m	3/8 7/10 7/16 1/2 9/16	4 6 8 10 12	200 300 400 500 650	4000 6100 8000 9200 10300	.13 .17 .21 .23 .25	235 530 980 1305 1820	5 10 15 21 24	130 200 275 360 410	3700 5100 6300 7500 8000	.12 .16 .20 .22 .23	200 460 850 1230 1700	15 22 29 38 42	65 100 135 180 205	3000 3800 4700 5600 6100	.11 .14 .18 .21 .22	160 390 790 1180 1600
.062 .078 .094 .109 .125	54 54 54 54 54 54 54 54 54 54 54 54 54 5	14 556 558 578 378 378	1 1% 1% 1% 1%	5/8 11/16 3/4 13/16 7/8	14 21 25 29 30	800 1100 1300 1600 1800	11600 13300 14700 16100 17500	.27 .31 .34 .37 .40	2350 3225 4100 5300 6900	29 36 44 50 60	500 650 790 960 1140	9000 10400 11400 12200 12900	.26 .30 .33 .36 .39	2150 3025 3900 5050 6500	48 58 66 72 78	250 325 390 480 570	6800 7900 8800 9500 10000	.25 .28 .31 .35 .37	2050 2900 3750 4850 6150

NOTES:

- 1. Low Carbon Steel as hot rolled, pickled, and
- Low Carbon Steel as hot rolled, pickled, and slightly oiled with an ultimate strength of 42,000 to 45,000 PSI Similar to SAE 1005—SAE 1010.
 Electrode Material is CLASS 2.
 Surface of steel is lightly oiled but free from grease, scale or dirt.
 Minimum weld spacing is that distance for which no increase in welding current is neces-sary to compensate for the shunted current effect in adjacent welds.
 Radius Face electrodes may be used:

0.010 to 0.031 --- 2" Radius 0.031 to 0.078 --- 3" Radius 0.078 to 0.125 --- 4" Radius

6

7. Weld time is indicated in cycles of 60 cycle frequency. 8. Tensile shear strength values are based on

recommended test sample sizes: Direction of Force Thickness Width

Length			
	.000" to .029"	5/e*	3*
	.030" to .058"	1"	4"
+	.059" to .115"	1 1/2	5*
	.116" to .190"	2"	6*

9. Tolerance for machining of electrode diam-eter "d" is ±.015" of specified dimension.
 10. Electrode force does not provide for force to press ill-litting parts together.

THICKNESS "T" of THINNEST OUTSIDE PIECE (See Notes 1, 2, 3 and 4	ELECTRODE DIAMETEF AND SHAPE (See Note 5)		ELECTRODE	WELD TIME CYCLES	CURI (App AM Tensile	DING RENT Irox.) IPS Tensile	MINIMUM CONTACTING OVERLAP	MINIMUM WELD SPACING (See Note 6 Below) ¢ to ¢	DIAMETER OF FUSED ZONE	Ultimate Te 70000	LB. LB. 90000	th of Metal
Below)	D, IN.,	d, IN.,	FORCE	CYCLES (60	Strength Below	Strength 150000 Psi		Ē	IN.	Up to 90000	Up to 150000	Psi and
INCHES	Min.	Max.	LB.	Per Sec.)	150000 Psi	and Higher	IN.	IN.	Approx.	Psi	Psi	Higher
0.006 0.008 0.012 0.014	3/16 3/16 1/4 1/4	*/32 */32 */s *8	180 200 260 300	N 3 5 4	2000 2000 2100 2500	2000 2000 2000 2200	3/16 3/16 1/4 1/4	3/16 3/16 1/4 1/4	0.045 0.065 0.076 0.082	60 150 185 240	70 170 210 250	85 210 250 320
0.016 0.018 0.021 0.025 0.031	1/4 1/4 1/4 1/6 1/6	1/8 1/9 5/32 3/16	330 380 400 520 650	44455	3000 3500 4000 5000 6000	2500 2800 3200 4100 4800	1/4 1/4 9/16 3/8 3/8	5/18 5/18 5/16 7/16 1/2	0.088 0.093 0.100 0.120 0.130	280 320 370 500 680	300 360 470 600 800	380 470 500 680 930
0.034 0.040 0.044 0.050 0.056	3/e 3/e 1/2 1/2	3/16 3/16 3/16 1/4 1/4	750 900 1000 1200 1350	6 6 8 10	7000 7800 8700 9500 10300	5500 6300 7000 7500 8300	7/16 7/16 7/2 9/18	9/16 5/8 11/18 3/4 7/8	0.150 0.160 0.180 0.190 0.210	800 1000 1200 1450 1700	920 1270 1450 1700 2000	1100 1400 1700 2000 2450
0.062 0.070 0.078 0.094 0.109 0.125	1/2 5/8 5/8 3/4 3/4 3/4	1/4 1/4 5/65 5/85 3/8 3/8	1500 1700 1900 2400 2800 3300	10 12 14 16 18 20	11000 12300 14000 15700 17700 18000	9000 10000 11000 12700 14000 15500	5/8 5/8 11/16 7/4 13/18 7/8	1 1'/a 1'/4 1'/2 1'/2 2	0.220 0.250 0.275 0.290 0.290 0.300	1950 2400 2700 3550 4200 5000	22400 2800 3400 4200 5000 6000	2900 3550 4000 5300 6400 7600

Schedule for Spot Welding Stainless Steel

NOTES:

Types of Steel—301, 302, 303, 304, 308, 309, 310, 316, 317, 321, 347 and 349
 Material should be free from scale, oxides, paint, grease and oil.
 Welding conditions determined by thickness of thinnest outside piece "T."
 Data for total thickness of pile-up not exceeding 4 "T". Maximum ratio between two thicknesses 3 to 1.

Electrode Material, CL2, CL3, OR CL11.
 Minimum weld spacing is that spacing for two pieces for which no special precautions need be taken to compensate for shunted current effect of adjacent welds. For three pieces increase spacing 30 per cent.

Design And Welding Data For Projection Welding Low Carbon Steels

	PROJECT	ON DESIGN	ELECTRODE	DIAMETERS					I		
Thickness			- top						Diameter of FusedZone	Minimum Sheer Strength (Single Projection Only)	Minimum Contacting Overlap
of Thinnest Outside Piece Inches	Base Diameterol Projection Dp Inches	Heightof Projection H	Minimumd	Minimum D Inches	Electrode Force Pounds	WeldTime (Cycles) 60 Cycles per Sec.	HoldTime (Cycles) Minimum	Weikding Current Amperes (Approx.)		(For Steels Having Strength of 100,000 psi and below) Pounds	
0.010 0.012 0.014 0.016 0.021	0.055 0.055 0.055 0.067 0.067	0.015 0.015 0.015 0.015 0.017 0.017	0.125 0.125 0.125 0.187 0.187	1/2 1/2 1/2 1/2 1/2 1/2	50 80 100 115 150	3 3 4 6	3 3 4 6	2,800 3,100 3,400 3,600 4,000	0.112 0.112 0.112 0.112 0.112 0.140	150 200 250 285 380	1/a 1/a 1/a 6/32 6/32
0.025 0.031 0.034 0.044 0.050	0.081 0.094 0.094 0.119 0.119	0.020 0.022 0.022 0.028 0.028	0.187 0.187 0.187 0.250 0.250	1/2 1/2 1/2 5/8 5/8	200 300 350 480 580	6 8 10 13 16	8 8 10 14 16	4,500 5,100 5,400 6,500 7,100	0.140 0.169 0.169 0.169 0.225	525 740 900 1,080 1,500	3/18 7/32 7/32 9/32 9/32
0.062 0.070 0.078 0.094 0.109	0.156 0.156 0.187 0.218 0.250	0.035 0.035 0.041 0.048 0.054	0.312 0.312 0.375 0.500 0.500	7/8 7/8 7/8 7/8 7/8	750 900 1,050 1,300 1,650	21 24 26 32 38	20 24 30 30 36	8,400 9,200 10,500 11,800 13,300	0.225 0.281 0.281 0.281 0.338	2,100 2,550 2,950 3,700 4,500	3/a 3/a 7/16 1/2 5/a
0.125 0.140 0.156 0.171 0.187	0.281 0.312 0.343 0.375 0.406	0.060 0.066 0.072 0.078 0.085	0.500 0.625 0.625 0.750 0.750	7/8 1 1 1	1,800 2,300 2,800 3,300 3,800	45 60 80 105 125	40 45 50 50	15,000 15,700 17,250 18,600 20,000	0.338 0.437 0.500 0.562 0.562	5,200 6,000 7,500 8,500 10,000	11/16 3/4 13/16 7/8 15/16
0.203 0.250	0.437 0.531	0.091 0.110	0.875 1.000	11/4 11/4	4,500 6,600	145 230	55 60	21,500 26,000	0.625 0.687	12,000 15,000	1 11/4

NOTES:

NOTES:
1. Type of Steel—Low Carbon SAE 1010—0.15% Carbon Maximum.
2. Material free of scale, oxide, paint, dirt, etc.
3. Size of projection determined by thickness of thinnest piece and projection should be on thickness of thinnest sheet for two thicknesses only. Maximum ratio between two thicknesses = 3 to 1.
5. See TABLE BELOW for design of punch and die for making projections.
6. Contacting overlap does not include any radii from forming.
7. Projection should be located in center of overlap.

8. Tolerance for Projection Dimensions:

. Tolerance for Projection Dimensions:	Thickness	Thickness
Dimension	Up to 0.050*	Over 0.050*
Diameter "D"		±0.007*
Height "H"	±0.002*	±0.005*